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ABSTRACT

The demand for automation using mobile robots has been increased dramatically in the last decade.
Nowadays, mobile robots are used for various applications that are not attainable to humans. Omni-
directional mobile robots are one particular type of these mobile robots, which has been the center of
attention for their maneuverability and ability to track complex trajectories with ease, unlike their
differential type counterparts. However, one of the disadvantages of these robots is their complex
dynamical model, which poses several challenges to their control approach. In this work, the modeling
of a four-wheeled omnidirectional mobile robot is developed. Moreover, an intelligent Proportional
Integral Derivative (PID) neural network control methodology is developed for trajectory tracking tasks,
and Particle Swarm Optimization (PSO) algorithm is utilized to find optimized controller’s weights. The
simulation study is conducted using Simulink and Matlab package, and the results confirmed the ac-
curacy of the proposed intelligent control method to perform trajectory tracking tasks.
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1. INTRODUCTION

Omnidirectional mobile robots have been utilized in numerous industries for their enhanced
features such as a high degree of maneuverability, improved dexterity, and driving capacity.
The high maneuverability of these robots has proven to outperform differential wheels
mobile robots as they can track complex trajectory that may be challenging or even not
feasible for differential wheels mobile robots. Omnidirectional mobile robots have shown the
capacity to perform motions in any direction without the need to have extensive space to
finish the maneuver. For all these advantages and enhanced features, the omnidirectional
mobile robots have been widely adopted in service and industrial applications, such as drug
delivery in pharmacies, materials delivery in a factory floor, goods arrangement and pack-
aging in the retail industry, and many more [1].

Omnidirectional mobile robots have the capacity to perform rotational and translational
motions at the same time and in an uncoupled type of motion. Various kinds of
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omnidirectional mobile robots were developed in the litera-
ture, such as three and four wheels omnidirectional mobile
robots. The four-wheeled type can offer much higher
maneuverability when compared to the three-wheeled type as
it has an extra degree of freedom represented by the fourth
wheel. The dynamics model and control methodologies
have been proven quite challenging, as many factors affect
the mobile robot system. Friction, backlash in the wheels,
nonlinear behavior of theDCmotors, sensor noise, positioning
drift, uncertainty in model parameters have made the control
method for these robots require rigorous stability and per-
formance analysis. Several control methodologies have been
proposed to take some of these factors into consideration.

In [2], dynamics of a Three-Wheeled Omnidirectional
Mobile Robot (TW-OMR) was obtained and then linearized.
Moreover, some insights for stability and control was pro-
vided. In [3], a proportional-integral control method was
proposed to perform point following and tracking tasks. The
controller’s parameters were tuned using the ant colony
optimization algorithm. The methodology was verified in
simulation in point following motion and circular trajectory
tracking tests. However, complex trajectories were not
considered and verified in this study. The use of the linear
control method with this highly nonlinear mobile robot sys-
tem may make this method fail to meet the high maneuver-
ability requirements of complex trajectories. High-speed
trajectory tracking controller based on Takagi–Sugeno Fuzzy
system was proposed in [4]. Kinematics inversion was utilized
in the feedback loop to simplify the control system design.
The tracking performance was evaluated with results from a
classical PID control, and the proposed method showed
a better outcome to follow a simple square trajectory. In [5], a
review of the omnidirectional and holonomic mobile robot
was provided. Insights into their dynamical and kinematics
modeling were discussed. Several control methods such as
PID, and Fuzzy control, were developed. However, no
simulation was provided to verify these control methods. In
[6], a TW-OMR dynamical model was developed. Based on
this model, a computed torque control method was proposed
to stabilize the mobile robot and provide accurate trajectory
tracking performance. A simulation study was conducted to
test the control approach, where a simple circular trajectory
was utilized. In [7], a full dynamic model was derived for an
omnidirectional mobile robot. Output feedback linearization
control method was proposed to solve the tracking task.

In [8], the output feedback control structure with a linear
controller and observer was used for tracking tasks of a
TW-OMR. Disturbances on the system considered as addi-
tive uncertainty terms with the control action provide to
the wheels. A laboratory-based TW-OMR was used to verify
the developed control methodology. The robot was able
to follow a simple circular trajectory. In [9], an adaptive
backstepping control methodology was proposed to control
a Four-Wheeled Omnidirectional Mobile Robot (FW-OMR).
Various motions were able to attain using this method, and
the performance was verified in the simulation study. In
[10], a PI control method was used to control a TW-OMR.
A fuzzy logic system was used to tune the PI gains instead of

using try and error approach. The effectiveness of the control
method was confirmed in simulation by a simple point to
point and circular trajectory tracking tests. In [11], a PID
control approach was used for trajectory tracking of a
TW-OMR. Practical emphases were on estimating the mo-
bile robot velocities from the robot’s internal sensors rather
than using an external localization system. In [12], a fuzzy
control system was proposed to control a FW-OMR, and was
directed towards security and surveillance applications. The
encoders and sensors of the wheels’ motors were used to
provide the feedback signal and to estimate the robot loca-
tion. The control method was verified in an experimental
study and was proven effective to follow a circular trajectory.
The results were compared with a simple proportional
controller. A sliding mode control method was proposed in
[13], to achieve trajectory tracking tasks in TW-OMR.
Backstepping approach was utilized to facilitate the reach-
ability to the control signal. Simple turning trajectory was
used to verify the control method, and small tracking errors
were observed. In [14], Wahhab and Al-Araji have presented
design based on Convolutional Neural Network Trajectory
Tracking (CNNTT) controller to control mobile robot to
find optimal path in the presence of obstacles using hybrid
swarm optimization. In [15], Al-Araji et al. proposed an
adaptive nonlinear controller for trajectory tracking of non-
holonomic mobile robot. The controller consists of feed-
forward multi-layer perceptron and modified Elman neural
network. The Elman neural model is trained to work as
orientation and position identifier, while the feed-forward
multi-layer perceptron is trained off-line and the weights are
on-line adapted to generate the actuating torques of mobile
motors. In [16], Al-Araji et al., proposed nonlinear neural
controller based on optimization algorithm to follow optimal
path-tracking of mobile robot. Artificial Bee Colony and
Particle Swarm Optimization algorithms are applied for
finding the optimal navigation of mobile robot.

It has been noted from the literature that the control
methods provided for trajectory tracking tasks in omnidi-
rectional mobile robots are either linear or non-optimized.
The performance of those methods is heavily dependent on
the designer trial and error approach, which can be infea-
sible with a large number of parameters. Moreover, most of
the control approaches reported in previous studies were
only verified using a simple point to point following or
circular trajectory. In practice, these robots are expected to
follow complex trajectories to perform service or industrial
tasks, and it is quite rare that they only follow a simple
circular trajectory. Furthermore, the uncertain environment
of these robots poses further challenges to their control
methodologies. Therefore, in this work, an intelligent Pro-
portional Integral Derivative (PID) based on the neural
network control method is proposed for trajectory tracking
tasks of a FW-OMR. The learning ability of the neural
network is expected to improve the motion accuracy of these
robots and make them able to overcome the uncertainties
in their environment. The controller’s parameters were
obtained using the particle swarm optimization algorithm.
A simulation study was conducted to verify the proposed
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control method, where a complex trajectory was tested and
verified. The results have confirmed the accuracy and
feasibility of the designed control approach.

2. FOUR-WHEELED OMNIDIRECTIONAL
MOBILE ROBOT MODELING

The configuration of the FW-OMR is shown in Fig. 1. There
is a 908 between the wheels. It is essential to define the
following notations to develop the model of the mobile robot.
The robot coordinates are defined by x, y, and θ. The wheels
velocities are v1 to v4.The linear velocity of the robot is
defined by V and Vn, and the angular velocity is represented
by ω. Wheels traction forces are given by tf 1 to tf 4 .Traction
forces in the directions of V and Vn are given by Fv and Fvn.
The distance between wheels is given by 2L. The torque of
the robot is provided by T. A local coordinate frame is
allocated to the center of the robot, and a global coordinate
frame is defined to relate the robot motion with its world.

2.1. Robot kinematics

To establish the relations between the robot motions linear
and angular motions, the following equation is defined [17]:2

4 V
Vn

ω

3
5 ¼ R

2
4 vx
vy
ω

3
5 (1)

where vx ¼ _x, vy ¼ _y, ω ¼ _θ and R is the orthogonal rotation
matrix, and it is given by

R ¼
2
4 cos ðθÞ sin ðθÞ 0
�sin ðθÞ cos ðθÞ 0

0 0 1

3
5 (2)

Based on Eq. (1), the following can be defined [18]

_x ¼ −sinðθÞVn þ cosðθÞV (3)

_y ¼ cosðθÞVn þ sinðθÞV (4)

_θ ¼ ω (5)

The transformation from the robot velocities to wheels
velocities is given by2
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2.2. Robot dynamics

The mobile robot dynamics is given by [19]

_V ¼ 1
M

ðFv � BvV � CvsignðVÞÞ (7)

_Vn ¼ 1
M

ðFvn � BvnVn � CvnsignðVnÞÞ (8)

_ω ¼ 1
J
ðT � Bωω� CωsignðωÞÞ (9)

where M and J are the robot mass, and moment of inertia,
respectively; Bf and Cf are the viscous and coulomb friction
coefficients, respectively, where f ¼ v, vn and ω. The robot
torque and forces are given by:

Fv ¼ tf 4 � tf 2 (10)

Fvn ¼ tf 1 � tf 3 (11)

T ¼ L
�
tf 1 þ tf 2 þ tf 3 þ tf 4

�
(12)

The traction force on each wheel is estimated by traction
torque as tfj ¼ Tj=r. The torque is electrically generated in
the motor which can be found by multiplying the motor
torque constant with the gear ratio and the current in the
motor i.e., Tj ¼ l Ktij. Substituting the torque back in the
traction force will result in

tfj ¼ lKt ij
�
r; …j ¼ 1; …; 4 (13)

where l is the gear reduction ratio, Kt is the motor torque
constant, ij is the current of the motor j, and r is the wheel
radius. Using the common DC motor model with a negli-
gible inductance, i.e., uj ¼ Rij þ kvωmj, the ij can be found as

ij ¼
�
uj � kv ωmj

��
R; …j ¼ 1;…; 4 (14)

where R is the motor coil resistance, uj is the voltage of
motor j, Kv is the EMF motor constant, and ωmj is the
angular velocity of the motor j, and it is given by:

ωmj ¼ lvj
�
r; …j ¼ 1; …; 4 (15)

3. NEURAL NETWORK PID CONTROL METHOD
DESIGN

Neural networks have been used in modeling for their
effective function approximation and learning ability. More
recently, they have been applied to control various nonlinear
systems. Control systems developed based on neural net-
works are categorized into two schemes. In the first scheme,

,

,

L

Fig. 1. The configuration of a four-wheeled omnidirectional mobile
robot
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the control action is computed directly by the neural
network. In the second scheme, the neural network is used
to tune the control parameters online. Both schemes require
training of the network to perform the required tasks. Back
propagation is one of the most famous training methods that
is used to train a feedforward neural network in what is
called supervised learning. It requires the differentiation of
the error signal to update the network’s weights. Input and
output data set are also necessary for such a learning
method, which could be challenging to obtain for some
systems. On the other hand, metaheuristic optimization al-
gorithms have shown promising results in solving various
engineering problems and recently have been applied to
train neural networks. These algorithms are based on
minimizing a cost function via tuning some design param-
eters, and they do not require error differentiation as in the
back propagation method. Therefore, they function as global
optimizers and do not easily fall in local minimums as in
local search methods. Thus, for these advantages, the particle
swarm optimization algorithm is adopted in the current
study to train the neural network [14, 15].

Every mobile robot is required to follow a trajectory to
perform a certain task. The accuracy of following this
trajectory is significantly important as that it has a direct
effect on the safety of the people around the robot, the
battery life, power consumption and heat dissipation, and
the wear and tear of the robot parts. The learning ability
of the neural network makes it feasible to attain the
required motion accuracy with a high level of robustness.
Therefore, a neural network proportional-integral-deriva-
tive (NN-PID) control method is developed in this work to
enhance the trajectory tracking tasks for a FW-OMR. The
closed loop control system that involves the proposed
control methodology is shown in Fig. 2. The error between
the reference and actual position is multiplied by the
orthogonal rotational matrix to transfer the error from
the world coordinates to the robot coordinates. The PSO
algorithm is function as a trainer for the neural network.
The cost function using in the PSO is based on the tracking

error vector eσ. The control action is produced from the
NN-PID control method, and is represented by four volt-
ages to drive the wheels’ motors [16].

The NN-PID control method is firstly proposed by Shu in
[14–16, 20]. The NN-PID controller proposed in [14–16, 20]
is represented as a neural network with three neurons in
the middle layer to mimic the behavior of the continuous
PID controllers. The first node in this layer corresponds to
the proportional component of the PID. Similarly, the
second and third nodes correspond to the integral, and
derivative components, respectively. In this work, three

Fig. 2. The structure of the closed loop control system

Fig. 3. The structure of the NN-PID controller
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NN-PID controllers are used, one each coordinate, i.e. NN-
PIDx, NN-PIDy, and NN-PIDθ. A fully connected neural
network layer is adopted in this work to map the output of
the three NN-PID controllers to the wheel’s voltages. The
structure of the NN-PID control method is shown in Fig. 3.
The input layer consists of three neurons with the error as
input. The hidden layer has nine neurons, each three of
those represent a NN-PID controller. The output layer has
four neurons that represent the four wheel’s voltages. A
fully connected neural network is utilized to connect the
hidden layer with the wheel’s voltages in the final layer.

The layers’ weights are given by Vhi, and Whkj, respec-
tively, where j ¼ 1; 2; …; 9, and k ¼ 1; 2; 3; 4. The first
layer output is given by

e1ðTÞ ¼ emxðTÞ; e2ðTÞ ¼ emyðTÞ; e3ðTÞ ¼ emθðTÞ (16)

The hidden layer net input to each neuron is given by

hnetjðTÞ ¼ VhjeiðTÞ; i
¼ integerDivisionðð jþ 1þ remainderð j; 3ÞÞ; 3Þ

(17)

The proportional neurons outputs are given by

h1ðTÞ ¼ sigmoidðhnet1ðTÞÞ (18)

h4ðTÞ ¼ sigmoidðhnet4ðTÞÞ (19)

h7ðTÞ ¼ sigmoidðhnet7ðTÞÞ (20)

The integral neurons outputs are given by

h2ðTÞ ¼ sigmoidðhnet2ðTÞÞ þ h2ðT � 1ÞÞ (21)

h5ðTÞ ¼ sigmoidðhnet5ðTÞÞ þ h5ðT � 1ÞÞ (22)

h8ðTÞ ¼ sigmoidðhnet8ðTÞÞ þ h8ðT � 1ÞÞ (23)

The derivative neurons outputs are given by

h3ðTÞ ¼ sigmoidðhnet3ðTÞ � h3ðT � 1Þ (24)

h6ðTÞ ¼ sigmoidðhnet6ðTÞ � h3ðT � 1Þ (25)

h9ðTÞ ¼ sigmoidðhnet9ðTÞ � h3ðT � 1Þ (26)

The outputs of the final layer are given by

okðTÞ ¼ okðT � 1Þ þ
X9
j¼1

whkjhjðTÞ (27)

The sigmoid function is given by [20]

sigmoidðnetÞ ¼ 2
e−net

� 1 (28)

4. NN-PID TRAINING BY PARTICLE SWARM
OPTIMIZATION

Particle Swarm Optimization (PSO) was firstly developed in
[21, 22], and it has become extremely famous ever since. It is
metaheuristic algorithms based on a simplified and efficient
set of computational steps. It mimics the social behavior of
swarm of particles. It has shown promising results in solving

nonlinear continuous problems [23–27]. Moreover, it has
shown faster convergence rate, more rapid computations,
and extra accurate solutions when compared with other
optimization algorithms. The particles positions represent
solutions in the search space. Thus, each particle has
n-dimensional vector to describe its position, where n is the
number of the optimization parameters. The particles
communicate within the swarm and follow a learning path

Fig. 4. PSO flowchart

Table 1. PSO parameters

Parameter Value

maximum number of iterations 1,000
c1 2
c2 2
w 1.5
swarm size 30
n 45
parameter range [–100, 100]
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based on their local best seen solution and also based on the
best global solution by the swarm.

Each particle update its velocity and position in this
process according to the flowing rules [21, 22]:

vkþ1
i ¼ wvki þ c1r1

�
pbesti � ξki

�þ c2r2
�
Gbest � ξki

�
(29)

ξkþ1
i ¼ ξki v

kþ1
i (30)

where at iteration k þ 1, vkþ1
i , and ξkþ1

i are the particle i’s
velocity, and position, respectively; w is the inertia; r1 and r2

are randomly generated numbers in the range zero to one; c1,
and c2 are constant to balance the update between the local
and global best; bbesti and Gbest are the local and the global best
solutions, respectively. The number of the PSO’s dimensions
n represent how many weights there are in the neural network.
The flowchart of the PSO algorithm is shown in Fig. 4. The
cost function is based on the error vector, and it is defined as

cost ¼ 1
m

Xm
i¼1

ðe2xðiÞ þ e2yðiÞ þ e2θðiÞÞ (31)

where the number of simulation samples is given by m. The
PSO parameters are presented in Table 1.

This study can be better improved or extended by
incorporating other optimization techniques like the Grey-
Wolf Optimization, Social Spider Optimization, Whale-
Optimization Algorithm [28–31]. A comparison study can
be conducted by comparing one of these recent optimization
techniques with PSO algorithm.

5. RESULTS AND DISCUSSION

The simulation was carried out in Simulink and Matlab. The
structure of Fig. 2 was adopted in the simulation. The robot
physical parameters were assumed as in Table 2. The
NN-PID control method was trained using PSO with the
parameters given in Table 1. After 600 iteration the neural
network was trained. The cost progress with each iteration
in shown in Fig. 5. The results of the training are given in
Table 3, and Table 4. Unlike previous works, a complex
reference trajectory was used in the simulation to verify the
effectiveness of the designed control methodology. The
reference trajectory is defined as

xrðT Þ ¼ 3sin
�
6πt

�
tfinal

�
; (32)

yrðT Þ ¼ 3sin
�
4πt

�
tfinal

�
; (33)

400

200

0
0 200 400 600

Iteration

co
st

Fig. 5. Cost progression with PSO iterations

Table 2. Robot parameters [17]

Parameter Unit Value

r m 0.0325
M kg 2.34
J kg$m2 0.0228
R Ω 4.3111
Kv V (rad�1/s) 0.0259
Kt V.s rad�1 0.0259
L m 0.089
l / 5
Bv N.s m�1 0.4978
Bvn N.s m�1 0.6763
Bw N.m.s rad�1 0.0141
Cv N 0
Cvn N 0
Cw N.m 0

Table 3. Input to hidden layer weights

Parameter Value

Kh1 3.183994
Kh2 2.164797
Kh3 –6.76984
Kh4 –0.51265
Kh5 2.769091
Kh6 –8.1403
Kh7 –1.07712
Kh8 7.005729
Kh9 2.03942

Table 4. Hidden to output layer weights

Weight Value Weight Value Weight Value Weight Value

Wh11 2.670686 Wh21 1.610139 Wh31 –0.26488 Wh41 –0.41302
Wh12 –4.36445 Wh22 0.903675 Wh32 –3.51607 Wh42 9.555913
Wh13 –11.0002 Wh23 27.50922 Wh33 3.772408 Wh43 –54.2146
Wh14 –13.7829 Wh24 –26.9897 Wh34 5.721002 Wh44 6.367803
Wh15 2.301405 Wh25 –3.54052 Wh35 1.148764 Wh45 0.79572
Wh16 –1.73654 Wh26 –8.72825 Wh36 19.46894 Wh46 30.33683
Wh17 6.857219 Wh27 –0.05555 Wh37 –2.99248 Wh47 –62.7306
Wh18 0.119107 Wh28 3.728767 Wh38 5.861321 Wh48 –0.00976
Wh19 48.98421 Wh29 5.315695 Wh39 45.37744 Wh49 62.72158
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thrðTÞ ¼ tan−1
�
xrðTÞ � xrðT � 1Þ

t þ «
;
yrðTÞ � yrðT � 1Þ

t þ «
Þ

(34)

where t is the current time instance and it is given by
tðTÞ ¼ tðT − 1Þ þ ΔT, the sampling rate is given
ΔT ¼ 0:1s. Moreover, « is a small number to avoid division
by zero.

First, the simulation study was carried out for the point
ðx; y; θÞ ¼ ð0; 0; π=6Þ. The corresponding results are
given in Figures 6, 7, 8 and 9. The mean square error is
calculated and presented in Table 5. It can be noticed from
these figures that the mobile robot was able to complete the
trajectory tracking with high motion precision. The velocityFig. 6. Trajectory plot

Fig. 9. Wheels velocities

Fig. 8. Robot velocities

Fig. 7. Tracking errors
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signals of the robot showed smooth change to perform the
maneuvers. Higher error and velocity were noticed in the
first few seconds of the simulation. These high values are due
to the initialization of the control method as the error tends

to increase at the start of the simulation. After this initiali-
zation phase passes, the control approach continues with a
smoothly changing signal to follow the complex trajectory.
Further, it was noticed that V3 has small magnitude as
compared to the other wheels velocities, as the range of it
was limited to ∓0:02 m=s unlike the other ones, which have
higher values. The reasoning behind this is the redundancy
of the degree of freedoms that are offered by this type of
mobile robot. Moreover, it means that the mobile robot was
able to track the provided complex trajectory without
actually needing to rotate the third wheel as much as the
other ones. This might be only because of the shape of the
given trajectory and other behavior might be noticed in
different trajectories. To investigate the robustness of the
control methodology, a different initial pose of the robot was
tested. In this test the initial point was selected as (x,y,θ) 5
(0.2,0.6,π/6). The same neural network was used in this
simulation without a retraining. The results of this simula-
tion are given in Figures 10, 11, 12 and 13. The mean square
error for this simulation is calculated and presented in Ta-
ble 5. Again, the mobile robot was able to follow the tra-
jectory with high accuracy. The robot started by making a
maneuver to orient towards the trajectory and then it moved
until it hits the reference trajectory and it continues to follow
it. In terms of the robot velocities it was similar as in the
previous simulation. However, this time higher oscillation
was noticed at the start of the simulation. This was expected
as the neural network was not trained to start from this
initial pose, therefore higher control action is provided to the
motors the drive the wheels to perform the maneuvers
rapidly and recover from the unexpected initial pose. The
calculated mean square errors in Table 5, show higher values
for the second simulation. Again, this behavior is due to the

Fig. 10. Trajectory plot

Table 5. Mean square error of trajectory tracking results

Initial point MSE ex MSE ey MSE eth

(0, 0, π/6) 2.3406e�05 2.7623e�05 2.5318e�05
(0.2, 0.6, π/6) 7.1066e�05 7.2527e�04 2.2730e�05

Fig. 11 Tracking errors

Fig. 12. Robot velocities
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start form an untrained pose. The error increase in the x and
y axis was about three times higher than the first case, while
the error for the θ was slightly lower. Although the MSE
three times increased, by analyzing the error shapes, it can
be concluded that most of this error is concentrated at the
initial point of the trajectory, and the remaining part of the
trajectory was followed by the robot with high accuracy.

6. CONCLUSION

In this work, an optimized intelligent control methodology
was proposed for trajectory tracking tasks in four-wheeled
omnidirectional mobile robots. Kinematics and dynamics
modeling was developed to facilitate the control methodol-
ogy design and development. A neural network Proportional
Integral Derivative (PID) control methodology was designed
for the trajectory-tracking tasks. Moreover, controller’s
neural network was manipulated via particle swarm opti-
mization algorithm. The control approach robustness and
effectiveness were verified in a number of simulation studies.
The simulation results confirmed the high accuracy of the
tracking tasks and the ability of the control method to start
from an arbitrary initial point without retraining for the
neural network. Future studies could be directed towards
including the back propagation methodology in the feedback
loop to improve motion accuracy. Moreover, a collision
avoidance algorithm is worth investigation to have safe
tracking. This study can be extended for future work by
introducing other control strategies such as Augmented
nonlinear PD controller, sliding mode control, Model
reference adaptive control, robust adaptive control [32–39].
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