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Abstract 

Additive manufacturing, particularly Fused Deposition Modeling (FDM) using 

three-dimensional (3D) printing, has revolutionized the manufacturing industry 

by offering design flexibility, customization options, affordability, and high 

printing speed. However, improper selection of process parameters in FDM can 

lead to suboptimal surface efficiency, defective mechanical properties, increased 

waste, and higher production costs. In this research, an Artificial Neural Network 

(ANN) model was developed to optimize dimensional properties in FDM by 

considering control factors such as layer thickness, orientation, raster angle, 

raster width, and air gap. Experimental data consisting of 27 sets of control 

parameters and corresponding dimensional outputs were used to train and 

validate the ANN model. The ANN model was developed using MATLAB 

software, employing training functions and learning algorithms to optimize the 

neural network architecture. The optimized ANN structure comprised 15 neurons 
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and 2 layers, and it demonstrated accurate prediction of dimensional properties 

with percentage errors ranging from 0.01% to 25.49% for length, less than 10% 

for weight, and less than 4% for thickness. The mean absolute percentage error 

(MAPE) and root mean square error (RMSE) were used to quantify the errors, 

indicating the effectiveness of the ANN model in predicting dimensional 

properties. The results highlight the potential of ANN in optimizing FDM process 

parameters for improved dimensional accuracy. The ANN model provides a 

reliable tool for manufacturers to predict and optimize the length, weight, and 

thickness of 3D-printed components, leading to enhanced product quality and 

reduced production costs. The developed ANN model can be further extended to 

consider other parameters and optimize various aspects of the additive 

manufacturing process. 

Keywords: Additive manufacturing, Artificial neutral network, Dimensional 

accuracy, Fused deposition modelling, Predictive modelling.  

 

 

 

1. Introduction 

The introduction of additive manufacturing has been a game-changer in the 

manufacturing industry, providing numerous advantages over traditional processes 

such as Computer Numerical Control (CNC) machining. One of the key benefits of 

three-dimensional (3D) printing, particularly the Fused Deposition Modelling 

(FDM) technique, is its ability to empower manufacturers with design flexibility 

and customization options. Unlike conventional methods, 3D printing allows for 

on-demand modifications without disrupting the production line. Additionally, 

FDM stands out among the various additive manufacturing techniques due to its 

affordability and high printing speed, making it a popular choice for manufacturers 

seeking efficient and cost-effective manufacturing solutions [1-3]. 

In particular, 3D melting and solidification-based printing offers several 

advantages, including high accuracy, nanometre resolution, minimal material 

waste, minimal roughness, and ease of assembly [4]. However, the improper 

selection of process or control parameters can lead to low surface efficiency, 

defective mechanical properties, increased waste and processing time, resulting in 

higher production costs and resource consumption [5]. The critical control factors 

for FDM methods are the raster angle, raster width, air gap, layer thickness, and 

component orientation [6, 7]. The layer thickness refers to the height of the 

materials accumulated along the Z-axis, which is typically the vertical axis of the 

FDM unit. It is usually smaller than the extruder nozzle diameter and depends on 

the nozzle diameter. Project orientation is characterized by the orientation of the 

part along the X-axis, Y-axis, and Z-axis on the build platform. The raster angle 

represents the direction of the deposition bead with respect to the X-axis of the 

build platform in the FDM machine. Raster width is defined as the width of the 

deposition beads and depends on the extrusion nozzle diameter. The air gap refers 

to the gap between two adjacent rasters on a deposited layer. The air gap is 

considered negative when two adjacent layers overlap [8].  

Various parameters are crucial for evaluating the quality of 3D printing 

components produced through additive manufacturing processes. These parameters 

encompass dimensional accuracy, mechanical strength, surface roughness, design 

duration, post-processing requirements, and material properties. In the existing 
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literature, many studies have primarily focused on mechanical performance, 

tribological properties, rheological properties, and other related factors [6, 7, 9, 10]. 

While certain parameters are widely recognized as quality indicators, such as 

dimensional accuracy and mechanical strength, the inclusion of parameters such as 

length, weight, and thickness may require further investigation and clarification. 

Although not traditionally exclusively associated with quality, these parameters 

significantly influence the outcome of the printing process. Attaining precise 

dimensions, appropriate weight, and the desired thickness is essential for ensuring 

the functionality and performance of the printed components in diverse applications 

[11, 12]. 

Machine learning is gaining momentum and playing a crucial role in enhancing 

various aspects of 3D printing processes. Its applications span across process 

optimization, dimensional accuracy analysis, manufacturing defect detection, and 

material property prediction [13, 14]. Artificial Neural Networks (ANN) are highly 

interconnected networks of basic components called neurons, which can perform 

linear or non-linear scalar transformations and are connected by weighted 

connections. With input from measured data, neural networks are well-suited for 

tasks such as classification, estimation, simulation, and prediction of desired 

properties [15-17]. In the context of control parameters and responses, ANNs can 

be trained to learn and represent the complex relationship between these variables. 

To use ANN for presenting the relationship, a dataset containing inputs (control 

parameters) and corresponding outputs (responses) is required. The ANN is then 

trained using this dataset, adjusting the connection weights between neurons to 

minimize the difference between the predicted outputs and the actual outputs. Once 

the ANN is trained, it can be used to predict the responses for new sets of control 

parameters that were not present in the training dataset. By feeding the control 

parameter values into the trained ANN, it can generate predicted responses, 

providing insights into how changes in the control parameters affect the outcomes. 

In one study, an ANN model was developed to predict surface roughness based on 

two process parameters: deposition angle and layer thickness [18]. Similarly, in 

another study, an ANN model was optimized for various process parameters, 

including layer thickness, build orientation, infill density, and number of contours, 

to enhance the dimensional precision (length, width, and thickness) of FDM printed 

parts [19]. In another study, different decision tree algorithms were employed to 

predict surface roughness in polyethylene terephthalate glycol (PETG) parts printed 

using the FDM technique. The relevant attributes considered were layer height, 

extrusion temperature, print speed, print acceleration, and flow rate [20].  

In summary, ANN has the potential to predict dimensional properties such as 

length, width, and thickness based on control factors or process parameters. The 

research conducted holds significant practical implications for the field of additive 

manufacturing. The research in this paper has practical implications for additive 

manufacturing. The findings provide insights for optimizing manufacturing 

processes, enabling customized part design, accelerating prototyping, improving 

quality control, exploring material-specific behaviours, and integrating with 

automation. These practical implications open up new opportunities for efficient 

production, personalized manufacturing, rapid innovation, and enhanced 

automation in additive manufacturing. The goal of the current work is to develop a 

predictive ANN model that can optimize the dimensional properties by considering 

control factors such as layer thickness, orientation, air gap, raster angle, and width.  
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2.  Methodology   

2.1.  Control Factors  

The control factors and their respective levels for predicting the quality of 3D 

printing are presented in Table 1. Traditionally, when employing a conventional 

structure with five control factors at three levels, it would necessitate conducting 

243(35) experiments. However, by utilizing the Taguchi approach, it becomes 

possible to achieve similar results with fewer studies. In this research, a feed-

forward neural network (NN) incorporating the backpropagation (BP) algorithm 

was employed to construct multiple models for optimizing input and output. The 

control factors employed for prediction using the ANN included layer thickness, 

orientation, raster angle, raster width, and air gap. These control factors served as 

inputs for the ANN architecture, while the desired outputs for prediction were the 

length, width, and thickness. A total of 27 sets of experiments were adopted 

according to the control factors as presented in Table 2 [21]. The development of 

this multi-input and output ANN feature aims to create an adaptive system capable 

of continuous monitoring of various parameters.  

Table 1. Control factors and the respective levels [21]. 

Control Factors Symbol 
 Levels  

1 2 3 

Layer thickness/mm A 0.127 0.178 0.254 

Orientation/° B 0 15 30 

Raster angle/° C 0 30 60 

Raster width/mm D 0.406 0.456 0.506 

Air gap/mm E 0 0.004 0.008 

Table 2. Experiment data [21]. 

Exp.  

No. 

Input  Output  

Layer 

thickness/mm 
Orientation/° 

Raster 

angle/° 

Raster 

width/

mm 

Air gap/mm ΔL ΔW ΔT 

1 0.127 0 0 0.406 0 0.0461 0.0598 0.1167 

2 0.127 15 0 0.456 0.004 0.0958 0.0434 0.1565 

3 0.127 30 0 0.503 0.008 0.0852 0.0832 0.1034 

4 0.127 0 30 0.456 0.004 0.0387 0.0732 0.1065 

5 0.127 15 30 0.506 0.008 0.1528 0.0498 0.1532 

6 0.127 30 30 0.406 0 0.1414 0.0434 0.1067 

7 0.127 0 60 0.506 0.008 0.0227 0.0534 0.1265 

8 0.127 15 60 0.406 0 0.1101 0.0665 0.1601 

9 0.127 30 60 0.456 0.004 0.0941 0.0634 0.1498 

10 0.178 0 0 0.456 0.008 0.098 0.201 0.1067 

11 0.178 15 0 0.506 0 0.0265 0.0765 0.1732 

12 0.178 30 0 0.406 0.004 0.0561 0.0498 0.1801 

13 0.178 0 30 0.506 0 0.0772 0.0367 0.1466 

14 0.178 15 30 0.406 0.004 0.1127 0.0434 0.1932 

15 0.178 30 30 0.456 0.008 0.1058 0.0366 0.1801 

16 0.178 0 60 0.406 0.004 0.0607 0.0367 0.1198 

17 0.178 15 60 0.456 0.008 0.0732 0.0665 0.1701 

18 0.178 30 60 0.506 0 0.0381 0.0365 0.1465 

19 0.254 0 0 0.506 0.004 0.543 0.0198 0.2634 

20 0.254 15 0 0.406 0.008 0.507 0.0421 0.3832 
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21 0.254 30 0 0.456 0 0.119 0.0238 0.3768 

22 0.254 0 30 0.406 0.008 0.0332 0.0182 0.3464 

23 0.254 15 30 0.456 0 0.0285 0.0401 0.4199 

24 0.254 30 30 0.506 0.004 0.0972 0.0299 0.0232 

25 0.254 0 60 0.456 0 0.0199 0.0281 0.2635 

26 0.254 15 60 0.506 0.004 0.0485 0.0401 0.3432 

27 0.254 30 60 0.008 0.008 0.0207 0.04 0.3065 

2.2.  Developing the ANN utilizing experimental data  

As in the flow chart in Fig. 1, the ANN methodology involved gathering data for 

tasks such as network creation, network configuration, weight and bias 

initialization, network training, network validation, and data analysis. Artificial 

neural network structures, which encompass comprehensive computational 

algorithms for knowledge exploration, offer significant potential for leveraging the 

information available in computer libraries.  

 
Fig. 1. Flowchart of developing ANN. 
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The training of the ANN was performed using MATLAB r2019b software. The 

input data (layer thickness, orientation, raster angle, raster width, and air gap) and 

output data (length, width, and thickness) were collected and imported into the 

MATLAB software. Afterwards, the ANN structure was created with a defined 

number of neurons and layers, as depicted in Fig. 2. 

 

Fig. 2. The schematic ANN structure of this research for quality. 

In developing the ANN framework in MATLAB, two datasets were categorized 

into a ratio of 70% and 30%. The training dataset, which comprised 70% (18) of 

the data, was used to train the ANN system, while the remaining 30% (9) was 

reserved for validation purposes. The training data was selected randomly from the 

original 27 experimental data points, resulting in a total of 18 data points. This 

process involved passing the data through the network, estimating errors, and 

optimizing the neural connections to minimize these errors. Finally, the trained 

output data underwent testing, representing the final step in the development of the 

ANN using MATLAB software.  

The performance of the neural network was assessed by subjecting it to 

experimental data testing. Evaluating the errors played a vital role in determining 

the effectiveness of the ANN. In this regard, error equations including the Mean 

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), were 

utilized to calculate and quantify the errors. Following the completion of the 

training process, the model underwent testing using additional experimental data to 

further validate its performance.  

3.  Results and Discussion 

3.1. ANN Optimization for Quality 

The MATLAB Neural Network Toolbox offers a wide range of training and 

learning capabilities. In this study, the training functions employed were 

TRAINLM and TRAINSG. Additionally, LEARNGDM was utilized to adapt the 

network to the Gradient Descent Momentum weight and bias learning feature, 

which had an impact on the Mean Square Error (MSE). For this research, an 

optimized parameter setting for the ANN architecture was used, consisting of 15 

neurons and 2 layers. The number of neurons depended on the number of input 

Output

Thickness

Input Hidden Layer

Length

Width

Layer Thickness

Orientation

Raster Angle

Raster Width

Air Gap
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parameters utilized. Throughout the analysis, various ANN configurations were 

evaluated by varying the number of neurons in the hidden layer. Iterative processes 

and different transfer functions were tested to determine the most effective 

approach for predicting the consistency parameters. The ANN training and 

architectural parameters can be found in Table 3. Ultimately, Network 3 was 

selected as the best network due to its low percentage error value of 3.951%. The 

optimized neural network tool is presented in Fig. 3.  

Table 3. ANN training and architectural parameters. 

No. of Run 1 2 3 

Network Name Network1 Network2 Network3 

Network Type FeedForward FeedForward FeedForward 

Training Func TRAINLM TRAINLM TRAINLM 

Adaptive Learning Func LEARNGDM LEARNGDM LEARNGDM 

No of Neurons 10 12 15 

Transfer Func TANSIG TANSIG TANSIG 

goal 0 1.00E-04 1.00E-05 

min_grad 1.00E-05 1.00E-04 1.00E-06 

mu 1.00E-05 1.00E-04 1.00E-05 

 

Fig. 3. Optimized neural network training tool. 

Table 4, 5, and 6 present a comparison between the experimental and ANN 

predicted results for the training data, specifically for length, weight, and thickness, 



Predictive Modeling of Dimensional Accuracies in 3D Printing . . . . 2155 

 
 
Journal of Engineering Science and Technology           August 2023, Vol. 18(4) 

 

respectively. In terms of length prediction, the percentage error between the 

experimental and predicted values ranged from 0.01% to 25.49%. It was found that 

83% of the datasets had a percentage error of less than 6% for length prediction. 

For weight prediction, 72% of the datasets had a percentage error of less than 10%, 

with the highest percentage error being 53.12%. Furthermore, the current model 

demonstrated effective prediction of thickness, with all datasets achieving a 

percentage error of less than 4%.  

Table 4. Comparison between experimental and  

ANN predicted result of training data for length. 

No. 

Input Data Output Length ΔL  

Layer 

thickness/mm 
Orientation/° 

Raster 

angle/° 

Raster 

width/mm 
Air gap/mm Experimental Predicted 

Percentage 

Error 

(%) 

1 0.127 0 0 0.406 0 0.0461 0.0461 0.09 

2 0.127 15 0 0.456 0.004 0.0958 0.0958 0.01 

3 0.127 30 0 0.506 0.008 0.0852 0.0852 0.04 

4 0.127 0 30 0.456 0.004 0.0387 0.0383 1.02 

5 0.127 15 30 0.506 0.008 0.1528 0.1494 2.21 

6 0.127 30 30 0.406 0 0.1414 0.1409 0.32 

7 0.178 15 0 0.506 0 0.0265 0.0292 10.32 

8 0.178 30 0 0.406 0.004 0.0561 0.0559 0.33 

9 0.178 0 30 0.506 0 0.0772 0.0777 0.62 

10 0.178 15 30 0.406 0.004 0.1127 0.1125 0.14 

11 0.178 30 30 0.456 0.008 0.1058 0.1055 0.27 

12 0.178 0 60 0.406 0.004 0.0607 0.0606 0.18 

13 0.254 30 0 0.456 0 0.119 0.1181 0.72 

14 0.254 0 30 0.406 0.008 0.0332 0.0352 6.11 

15 0.254 15 30 0.456 0 0.0285 0.0278 2.29 

16 0.254 30 30 0.506 0.004 0.0972 0.0971 0.14 

17 0.254 0 60 0.456 0 0.0199 0.0251 25.49 

18 0.254 15 60 0.506 0.008 0.0485 0.0418 13.74 

Table 5. Comparison between experimental and  

ANN predicted result of training data for weight. 

No. 

Input Data Output Weight ΔW  

Layer 

thickness/mm 
Orientation/° 

Raster 

angle/° 

Raster 

width/mm 

Air 

gap/mm 
Experimental Predicted 

Percentage 

Error (%) 

1 0.127 0 0 0.406 0 0.0598 0.0586 2.08 

2 0.127 15 0 0.456 0.004 0.0434 0.0448 3.17 

3 0.127 30 0 0.506 0.008 0.0832 0.0798 4.10 

4 0.127 0 30 0.456 0.004 0.0732 0.0728 0.53 

5 0.127 15 30 0.506 0.008 0.0498 0.0493 1.00 

6 0.127 30 30 0.406 0 0.0434 0.0436 0.46 

7 0.178 15 0 0.506 0 0.0762 0.0764 0.27 

8 0.178 30 0 0.406 0.004 0.0498 0.0499 0.11 
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9 0.178 0 30 0.506 0 0.0367 0.0377 2.76 

10 0.178 15 30 0.406 0.004 0.0434 0.0336 22.52 

11 0.178 30 30 0.456 0.008 0.0366 0.0369 0.95 

12 0.178 0 60 0.406 0.004 0.0367 0.0366 0.37 

13 0.254 30 0 0.456 0 0.0238 0.0271 13.69 

14 0.254 0 30 0.406 0.008 0.0182 0.0209 14.64 

15 0.254 15 30 0.456 0 0.0401 0.0393 1.98 

16 0.254 30 30 0.506 0.004 0.0299 0.0304 1.64 

17 0.254 0 60 0.456 0 0.0281 0.0251 10.62 

18 0.254 15 60 0.506 0.008 0.0401 0.0188 53.12 

Table 6. Comparison between experimental and  

ANN predicted result of training data for thickness. 

No. 

Input Data Output Thickness ΔT  

Layer 

thickness/mm 
Orientation/° 

Raster 

angle/° 

Raster 

width/mm 

Air 

gap/mm 
Experimental Predicted 

Percentage 

Error (%) 

1 0.127 0 0 0.406 0 0.1167 0.1174 0.58 

2 0.127 15 0 0.456 0.004 0.1565 0.1565 0.01 

3 0.127 30 0 0.506 0.008 0.1034 0.1044 1.01 

4 0.127 0 30 0.456 0.004 0.1065 0.1066 0.08 

5 0.127 15 30 0.506 0.008 0.1532 0.1533 0.07 

6 0.127 30 30 0.406 0 0.1067 0.1061 0.58 

7 0.178 15 0 0.506 0 0.1732 0.1778 2.64 

8 0.178 30 0 0.406 0.004 0.1801 0.1805 0.23 

9 0.178 0 30 0.506 0 0.1466 0.1465 0.06 

10 0.178 15 30 0.406 0.004 0.1932 0.1857 3.91 

11 0.178 30 30 0.456 0.008 0.1801 0.1808 0.40 

12 0.178 0 60 0.406 0.004 0.1198 0.1199 0.11 

13 0.254 30 0 0.456 0 0.3768 0.3789 0.55 

14 0.254 0 30 0.406 0.008 0.3464 0.3459 0.15 

15 0.254 15 30 0.456 0 0.4199 0.4176 0.54 

16 0.254 30 30 0.506 0.004 0.2565 0.2566 0.04 

17 0.254 0 60 0.456 0 0.2635 0.2619 0.62 

18 0.254 15 60 0.506 0.008 0.3432 0.3561 3.76 

3.2. ANN Prediction for Quality 

The neural network model was developed using a feed-forward backpropagation 

architecture with 5-15-3 neurons, as illustrated in Fig. 3. Out of the 27 experimental 

data points, 18 were selected for training the ANN in this model, while the 

remaining data points were used for evaluation. The selection of training and 

evaluation data was performed randomly. 

Based on Fig. 4, the training of the model was stopped when the validation error 

increased at epoch 2. The figure indicates that the best validation performance at 

epoch 0 was 1.3398e-06. Furthermore, referring to Fig. 5, the regression plots for 

training, validation, testing, and overall were found to be 0.99845, 0.99996, 

0.99996, and 0.99907, respectively. These values indicate a strong linear 

relationship between the model's outputs and the desired goals, as they are close to 

unity. The output of the ANN model aligns perfectly with the target, and the 

measured and expected values exhibit remarkable similarity.  
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Fig. 4. Performance plot of dimensional accuracy. 

 

Fig. 5. Regression plot of dimensional accuracy. 

3.3. Model Validation for Quality 
The results obtained from the ANN were compared with the experimental data. To 

evaluate the predictive performance of the models, Root Mean Square Error 

(RMSE) and Mean Absolute Percentage Error (MAPE) were calculated by 

comparing the targets and outputs of the ANN model. After successfully 

completing the training process, the network was tested using additional 

experimental data. The ANN model's output was calculated by taking into account 

various parameters.  

RMSE is a commonly used metric for measuring the accuracy of a predictive 

model. It quantifies the average difference between the predicted values of a model 

and the actual values in a dataset. The RMSE value was calculated using Equation 
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(1) and computed in MATLAB. Tables 7 and 8 present the RMSE values between 

the actual and predicted values for the training and validation datasets, respectively. 

The optimized number of neurons, determined by selecting the one with the lowest 

RMSE value, is 15. For the training dataset, the RMSE values for length, width, 

and thickness are all below 0.0057. The validation datasets further confirm the 

validity of the optimized model, as all the RMSE values are below 0.0014.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁
                                           (1) 

where Predictedi is the predicted value for the ith observation and Actuali is the 

observed (actual) value for the ith observation, ad N is the total number of observations.  

Table 7. Comparison of RSME value between  

actual and predicted value for training dataset. 

No. of 

Neurons 

RMSE for  

Length 

RMSE for  

Width 

RMSE for 

Thickness 

10 0.0034 0.0078 0.0116 

12 0.0231 0.0119 0.0261 

15 0.0023 0.0057 0.0038 

Table 8. Comparison of RSME value between  

actual and predicted value for validation dataset. 

No. of Neurons RMSE for Length RMSE for Width RMSE for Thickness 

15 0.0011 0.0010 0.0014 

On the other hand, MAPE serves as a metric to assess the accuracy of a 

predictive model by quantifying the percentage deviation from the actual values. It 

offers a relative measure of the magnitude of errors introduced by the model. The 

MAPE values were computed using the equation (2). Table 9 presents the MAPE 

values for the training and validation datasets, including length, width, and 

thickness parameters. Notably, the MAPE for the training data is below 7.5%, while 

the MAPE for the validation data is below 3.1%.  

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
|𝑛

𝑖=1 × 100                             (2) 

Table 9. MAPE values for training and validation datasets. 

Parameter 
Training  

Dataset MAPE (%) 

Validation  

Dataset MAPE (%) 

All 3.951 1.766 

Length 3.557 3.066 

Width 7.445 1.687 

Thickness 0.851 0.546 

4. Conclusions 

In this study, an Artificial Neural Network (ANN) model was developed to 

optimize the dimensional properties of 3D-printed components in the Fused 

Deposition Modeling (FDM) process. The ANN model demonstrated high 
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accuracy in predicting the length, weight, and thickness of the printed parts, with 

percentage errors within acceptable limits. The key findings of this study highlight 

the effectiveness of the ANN model in optimizing FDM process parameters. By 

considering factors such as layer thickness, orientation, raster angle, raster width, 

and air gap, the ANN model successfully predicted the dimensional properties of 

the printed parts. This demonstrates the potential of ANN as a reliable tool for 

manufacturers to achieve improved dimensional accuracy and enhance the overall 

quality of 3D-printed components. While the developed ANN model showed 

promising results in predicting the dimensional properties of 3D-printed 

components, future work could focus on expanding the model's capabilities. This 

could include incorporating additional input variables and process parameters to 

improve accuracy and reliability. Exploring other machine learning algorithms or 

hybrid models could also be beneficial in enhancing the prediction capabilities. 

 

Abbreviations 
 

AM Additive manufacturing 

ANN Artificial Neural Network  

FDM Fused Deposition Modeling 

MAPE Mean Absolute Percentage Error  

RMSE Root Mean Square Error  
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