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Abstract—Since the introduction of Signal Transition Graphs (STGs) in the mid 1980s [1, 2],
a number of techniques for the synthesis of self-timed circuits using STGs have been
proposed.  To achieve a hazard-free implementation, restrictions on the structure of the STG
have been employed.  Also, hazard-free design techniques have been incorporated into the
synthesis procedure.  Despite these, implementations derived using these techniques are not
always hazard-free.  Hazards are shown in this paper to be intrinsic to the function being
implemented and cannot be eliminated.  To avoid these hazards, certain timing conditions
must be preserved.

Previous attempts [3, 4, 5] to eliminate hazards are shown to have important limitations.  A
new procedure is proposed in this paper for the detection of hazards and timing constraints to
avoid these hazards.  The procedure is compared with previous attempts at hazard detection,
and examples presented to show the limitations of other approaches.
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GLOSSARY OF SYMBOLS AND NOTATION
C ∩ ψ The intersection of a cube C with a cover ψ (C C C Ci ii    ∩ = ∩ ∈ψ ψ! "! ).

|σ| The length of sequence σ (i.e., the number of transitions in σ).
σ° `T ′ The projection of transition sequence σ ∈ T* onto the set of transitions T ′.  In other

words, the removal of all transitions τ ∉ T ′ from sequence σ.
s[σ〉 Sequence σ ∈ T* is enabled in state s ∈ S.
s[σ〉s′ Transition sequence σ ∈ T* is enabled in state s ∈ S and the firing of sequence σ

from state s will lead to state s′ ∈ S.  In this paper, it is also taken to denote the set of
states along the path s[σ〉s′ from s to s′ including states s and s′.

s[τ〉 Transition τ ∈ T is enabled in state s ∈ S.
s[τ〉s′ Transition τ ∈ T is enabled in state s ∈ S and the firing of transition τ from state s will

lead to state s′ ∈ S.
δ Transition function δ: S × T → S such that 〈s, t〉 ∈ dom(δ) if and only if transition t is

enabled in state s.  This definition is usually extended to the mapping δ: S × T* → S.
Likewise, 〈s, σ〉 ∈ dom(δ) if and only if sequence σ is enabled in state s.

ΦJ = 〈S, T, δ, s0〉 A state graph description.
ΣJ = 〈P, T, F, M0〉 An STG description.
f(s, x) The implied or next state value [2, 3, 10] of signal x in state s and is defined as:
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where x± denotes either an x+ or x− and
s(x) denotes the logical state of signal x in state s.

F Flow relation (F ⊆ (P × T) ∪ (T × P) such that dom(F) = range(F) = P ∪ T).
J The set of network signals described in Φ and Σ (J = JI ∪ JNI).
JI The set of input signals.
JN The set of internal signals (not input nor output).
JNI The set of non-input (output and internal) signals (JNI = JO ∪ JN).
JO The set of output signals.
M0 The initial marking on ΣJ.
P The set of places in ΣJ.
s0 The initial state in ΦJ corresponding to token marking M0 in ΣJ.
S The set of states in the ΦJ.
T The set of signal transitions in ΣJ (T = TI ∪ TNI = J × {+, −}).
TI The set of input signal transitions (TI = JI × {+, −}).
TN The set of internal signal transitions (TN = JN × {+, −}).
TNI The set of non-input signal transitions (TNI = JNI × {+, −}).
TO The set of output signal transitions (TO = JO × {+, −}).
T* The set of all finite length sequences of symbols in T (T* = {〈τi : i ∈ I N〉 ° τi ∈ T}).
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1. Introduction

Signal Transition Graphs (STGs) and their application to the synthesis of self-timed circuits
were first introduced by Chu in the mid 1980s [1, 2, 3, 4].  Since then, a number of techniques
for the synthesis of self-timed circuits using STGs have been proposed [5, 6, 7, 8].  Though
diverse in many aspects, the synthesis procedures utilised in these techniques conform to the
following structure, first introduced by Molnar et al. [9] for the synthesis of Petri Nets.

Step 1: State graph derivation.
Step 2: Karnaugh map generation for non-input signals.
Step 3: Derivation of logic expressions from the Karnaugh maps.

In an attempt to achieve a hazard-free implementation, restrictions on the structure of STGs
have been employed [3, 4, 6].  Hazard-free design techniques also have been incorporated into
the synthesis procedure [7, 10].  Despite these measures however, implementations derived
using this procedure can still contain hazards.  These hazards are shown in this paper to be
intrinsic to the function implemented and cannot be eliminated.  Hence, to avoid these
hazards, critical timing conditions necessary to ensure a hazard-free operation must be
preserved.

These hazards are first described by Lavagno et al. in [5] where they are attributed to the
switching of active prime implicants or implicates.  A procedure that detects some, but not all
hazards and their related timing conditions is proposed in [5].

In this paper, hazard conditions in implemented circuits are analysed.  Other approaches to
achieve hazard-free implementations are also examined.  As we will show in this paper,
implementations derived using these approaches can still contain hazards.  A new algorithm is
proposed that detects these hazards and determines critical timing which must be preserved to
avoid these hazards.

The paper is organised as follows.  In section 2, the technique for synthesis of self-timed
circuits from STGs is reviewed and important terminology introduced.  The properties of
speed independence, semi-modularity and persistency are examined in Section 3 with regard
to circuit hazards and examples are presented to clarify the concepts.  These examples
motivate the algorithms for detecting and avoiding hazards that are presented in Section 4.
Our approach is compared with other techniques for hazard detection and avoidance in
Section 5, and conclusions are given in Section 6.
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2. Synthesis of Circuits from STGs

In this section, an overview of the synthesis of self-timed circuits from STGs is presented.

2.1. Signal Transition Graphs

A Signal Transition Graph (STG) is a form of Petri Net with properties referred to in the Petri
Net literature as live, safe and free choice [3, 11, 12].  Transitions in these graphs are
interpreted as signal transitions and are denoted by the name of a signal suffixed with a ‘+’ or
a ‘−’ to express a rising or a falling transition of the signal respectively.  To facilitate
implementation, transitions of input signals are underlined to differentiate them from
transitions of non-input (internal and output) signals.  Similar to Petri Nets, tokens and places
in STGs are denoted as dots and circles respectively.  Places with only one input and one
output transition are not represented in STGs for reasons of conciseness.

As an example, consider the STG description of a Muller-C element in Fig. 1b.  Note that
unlike its Petri Net equivalent in Fig. 1c, places in the STG are only represented implicitly by
the directed arcs in the description.  Bars denoting transitions in the STG are also omitted
leaving behind a compact description of the Muller C-element.  Using firing rules similar to
those in Petri Net, sequences of signal transitions described by the STG can be determined by
continually firing the enabled transitions (i.e., transitions with all input places filled with
tokens).  Alternatively, the STG may also be interpreted using the causal relations expressed.
In other words, interpreting each “τ1 z  τ2” in the STG as the causal relation “transition τ1
causes or is followed by transition τ2”.



5

(a)

(b) (c)

C p1 p2

p3 p4

p5 p6

p7 p8

Figure 1:  (a) The block description of a Muller-C element, (b) its STG description and (c) its
Petri Net equivalent.

In addition to the graphical representation, an STG is denoted formally as a 4-tuple,
ΣJ = 〈P, T, F, M0〉, where

J is the set of network signals described in Σ,
P, the set of places in the STG,
T, the set of all signal transitions (T = J × {+, −}),
F, the flow relation (F ⊆ (P × T) ∪ (T × P) such that dom(F) = range(F) = P ∪ T) and
M0 is the initial token marking on the STG.

For more details on the syntax and semantics of Signal Transition Graphs, interested readers
should consult [2, 3, 4].

2.2. State Graphs

Another graphical description of circuit behaviour used during the synthesis procedure is the
state graph description.  In brief, a state graph is the reachability graph of an STG.  However,
unlike its Petri Net equivalent, states in state graphs are denoted by binary vectors obtained by
putting the logical states of all signals in J in a predefined sequence.  Directed arcs between
states in the state graph are labelled with the corresponding signal transitions causing the state
transitions.

Fig. 2 shows the state graph description of the STG in Fig. 1b.  States are represented by
binary vectors 〈α, β, χ〉 and the initial state corresponding to the initial marking of the STG is
shown with symbol ‘•’.
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•

Figure 2:  The state graph description of the Muller-C element depicted in Fig. 1.

Similar to STGs, a state graph description is denoted formally as a 4-tuple, ΦJ = 〈S, T, δ, s0〉,
where

J is the set of network signals specified in Φ and Σ,
S, the set of all states in the state graph,
T, the set of all signal transitions (T = J × {+, −}),
s0, the initial state on the state graph corresponding to M0 on the STG and
δ, the transition function δ: S × T → S such that 〈s, t〉 ∈ dom(δ) if and only if transition t

is enabled in state s.

2.3. Representation of Subspaces or Cubes in Karnaugh Maps

Having derived the state graph description, Karnaugh maps for non-input signals are next
generated.  For a non-input signal, x ∈ J, its Karnaugh map is obtained by filling each cell in
the Karnaugh map with the implied value, f(s, x), of signal x in the corresponding state, s, in
the state graph [2, 4, 10].  The logic expression for signal x is then derived from the Karnaugh
map [10].

In this paper, an n literal Karnaugh map is denoted by an n-space.  Prime implicants and
implicates derived from the Karnaugh map are denoted by cubes or p-subspaces within the
n-space.  n-Space and p-subspaces are formally defined as follows:

Definition 1:  n-Space
A multi-dimensional Boolean space of n dimensions with discrete coordinate values of 0
and 1 on each of its dimensions is called an n-space.

z
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Definition 2:  p-Subspace
A multi-dimensional Boolean space of p dimensions within an n-space (p ≤ n) is called a
p-subspace.

z

Using a ternary notation of ‘0’, ‘1’ and ‘−’ for logic values and undefined respectively, cubes
within a Karnaugh map are represented in the same way as prime implicants and implicates in
the Quine-McCluskey tabular Karnaugh mapping [13, 14].  As an example, consider the 4
dimensional Karnaugh map in Fig. 3.  Note that a cube in the Karnaugh map is denoted using
this notation as − −1− where the value of literal c remains at logic 1 and values of literals a, b
and d are variable.

00 01 11 10

00

01

11

10

ab
cd

a

b

c

d

state or cube 0000

cube 1-0-

cube --1-

Figure 3:  Ternary representation of cubes within a Karnaugh map.

In this paper, a set of cubes within a Karnaugh map is called a cover.  The intersection of a
cube C and a cover ψ is defined to be the cover C C C Ci ii    ∩ = ∩ ∈ψ ψ! "! .  Refer to the

Appendix for more details.

3. Circuit Hazards

Unlike synchronous circuits where signals are only sampled and updated at periodic intervals,
a self-timed circuit constantly monitors the state of its signals and reacts to changes almost
instantaneously.  Consequently, spurious transient changes or hazards in a self-timed circuit
can result in malfunctions.  The success of a self-timed implementation technique relies on its
ability to eliminate and/or avoid circuit hazards.
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In this section, circuit properties and restrictions commonly used to achieve hazard-free
implementations are examined.  Hazard conditions that cannot be eliminated using these
properties and restrictions are analysed.  An algorithm is presented that detects these
conditions and determines the critical timing constraints necessary to avoid these hazards.

3.1. Speed-independence

An important circuit property in the implementation of self-timed circuits is the property of
speed-independence [15, 16].  Informally, speed-independence refers to circuits that operate
independently of the delays in logic elements of the circuit.  Frequently utilised as a means to
ensure hazard-free implementations, speed-independence is derived through the property of
semi-modularity defined as follows:

Definition 3: Semi-modularity [15, 16]
A circuit is said to be semi-modular if its state graph description, ΦJ = 〈S, T, δ, s0〉,
satisfies

∀ s1, s2, s3 ∈ S; ∀ τ1, τ2 ∈ T (s1[τ1〉s2 ∧ s1[τ2〉s3) ⇒ (∃ s4 ∈ S : s2[τ2〉s4 ∧ s3[τ1〉s4).

The notation, si[τj〉sk, denotes that transition τj is enabled in state si and that the firing of
τj from si will lead to state sk.  In other words, if transitions τ1 and τ2 are enabled in
state s1, the firing of τ1 should not disable the firing of τ2 and vice versa forming a
“semi-modular structure” in the state graph as depicted in Fig. 4.  In [15, 16], Muller
proved that a semi-modular circuit is also speed-independent.

z

s1

s2 s3

s4

1

1 2

2

Figure 4:  The semi-modular structure corresponding to the concurrent firing of transitions τ1
and τ2 from state s1.

Though semi-modularity is sufficient to ensure speed-independence as defined by Muller [15,
16], it cannot ensure hazard-free self-timed implementations.  To clarify this, consider the
semi-modular implementation c = a + b⋅d for the STG in Fig. 5a.  In particular, consider the
firing of transitions b+ followed by a− while the circuit is in the initial state where
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a = c = d = 1 and b = 0 (cell marked ‘•’ in Fig. 5b).  Notice that even when c is implemented
from a semi-modular state graph description (superimposed on the Karnaugh map in Fig. 5b),
a hazard can occur at the output c depending upon the delay between the firing of b+ and a−,
and the propagation delay through the AND and the OR gate implementing signal c as
follows:

Firstly, let the delay between the firing of b+ and a− be denoted as ∆ and the
propagation delay from b to c and from a to c be denoted as ∆1 and ∆2 respectively.
Starting at the initial state, note that signal c is being held high by signal a being high.
The firing of b+ from this state will cause prime implicant b⋅d (i.e., the output of the
AND gate) to become high, subsequently holding signal c high.  Note however that the
firing of b+ will also lead to the firing of a− terminating the effect of “a high holding
signal c high”.  Hence, on a normal operation, the effect of “b⋅d high holding signal c
high” is expected to occur before the firing of a− relinquishes the effect of signal a on
signal c.  In other words, ∆ + ∆2 is expected to be greater than ∆1.  As illustrated in
Fig. 5d a hazard will appear at output c if ∆ + ∆2 < ∆1.  Therefore, the implementation is
not hazard-free, nor is it speed-independent as characterised earlier.



10

(a)
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b
d

c

(c) (d)

b+
Signal b

a-

Signal a

Signal c

a- causing a premature  c-
if  

b+ causing  c+
a- causing  c-

a+
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c+

d+a- b-

c-d-

(b)

pr ime
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b

d

×

×

×
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1 1

1

1 0

0

0

00 01 11 10

00

01

11

10

c

ab
cd

a

c

×

1

1

00

Figure 5:  (a) An STG with (b) its state graph superimposed on the Karnaugh map for signal
c.  (c) The implementation of signal c in the SOP form and (d) the timing diagram analysing
the firing of b+ followed by a− and its effect on signal c.

The cause of this hazard is attributed to the switching of active prime implicants in [5].  In our
example, from a to b⋅d during the firing of b+ followed by a− as follows:

Denoting the state of the circuit as a binary vector 〈a b c d〉, the firing of b+ followed by
a− from state 1011 can be interpreted as a transition from state 1011 to state 1111
followed by a transition to state 0111.  As illustrated in the Karnaugh map in Fig. 5b,
notice that prime implicant a is active when the circuit is in states 1011 and 1111, while
prime implicant b⋅d is active when the circuit is in states 1111 and 0111.  In other
words, the active prime implicants holding signal c high while the circuit traverses from
state 1011 through to state 0111 switches from a to b⋅d and a hazard will appear at
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output c if prime implicant b⋅d is not active and holding signal c high before prime
implicant a is deactivated and relinquishes its effect on output c.

Though the cause of this hazard can be attributed to the switching of active prime implicant
(implicate), one should not be tempted into thinking that an implementation in the SOP (POS)
form which does not involve any switching of prime implicants (implicates) will be
hazard-free.  The reason for this is that an implementation in the SOP (POS) form not
involving any switching of prime implicant (implicate) can also be equivalent to an
implementation in the POS (SOP) form which may entail the switching of active prime
implicates (implicants).  As such, these implementations may still contain hazards.  To
illustrate this, consider the implementation c =}d⋅a for the STG in Fig. 6a.  Note that c =}d⋅a
can be taken as a single prime implicant implementation, and hence will not involve any
switching of prime implicants, or an implementation in the POS form consisting of prime
implicates}d and a as illustrated in Fig. 6b.  Similar to the example in Fig. 5, a hazard can
occur at output c when the circuit traverses from state 0000 to state 1001 depending upon the
delay between the occurrence of d+ and a+ and the propagation delay through the logic
elements implementing signal c as illustrated in Fig. 6d.
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Figure 6:  (a) An STG and (b) its semi-modular state graph description superimposed on the
Karnaugh map of signal c.  (c) The implementation c =}d⋅a can be viewed as a single prime
implicant POS form or a double prime implicates SOP form and (d) the timing diagram
analysis the condition which can results in a hazard.

Additionally, notice that wire or stray delays deferring the arrival of transition b+ at the input
of the AND gate in the example in Fig. 5 will have an equivalent effect of decreasing the
effective value of ∆ or increasing the effective value of ∆1, worsening the situation.  Likewise,
wire or stray delays deferring the arrival of a+ at the input of the AND gate in the example in
Fig. 6.  As such, the effect of wire delays can aggravate or even be the cause of circuit hazards
and cannot be ignored.

From the above examples, it is concluded that semi-modularity is insufficient to ensure
hazard-free speed-independence in self-timed circuits implemented from well-formed STGs
with unique state coding.  However, semi-modular circuits do not rely upon the ordering of
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concurrent signal changes, and thus are free from critical races and essential hazards.  These
hazard conditions are defined as follows:

Definition 4:  Races [17, 18]
A transition from one state to another involving the change of more than one state
variable (feedback signals) is known as a race.  Races where the ordering in the changes
in these state variables can lead to a different final state is known as critical race.

z

Definition 5:  Essential Hazard [17, 18, 19]
An essential hazard is a critical race between an input and a state variable.

z

3.2. Persistency

Another property that is used to achieve hazard-free speed-independence is the property of
persistency [3, 4].  Introduced by Chu, persistency means that an enabled transition cannot be
disabled by the occurrence of some other transition and is defined using state graph
terminology as follows:

Definition 6:  Persistency (summarised from Definition 5.3 pp.86 [3])
A state graph description, ΦJ = 〈S, T, δ, s0〉, is said to be persistent if and only if

∀ τ ∈ TNI (∃ s, s′ ∈ S, τ′ ∈ T : s[τ〉 ∧ s[τ′〉s′) ⇒ s′[τ〉
z

Similarly, note that it can be stated as ∀ τ ∈ TNI  (∃ s, s″ ∈ S, τ′ ∈ T : s[τ〉s″ ∧ s[τ′〉) ⇒ s″[τ′〉.
In other words, ∀ τ ∈ TNI  (∃ s, s′, s″ ∈ S, τ′ ∈ T : s[τ〉s″ ∧ s[τ′〉s′) ⇒ (s″[τ′〉 ∧ s′[τ〉) which is
equivalent to the definition of semi-modularity defined above [15 p.208, 16 p.213-214].  This
equivalence between the two definitions is lost however when Chu characterised persistency
in STGs in the following manner [2, 3]:

A transition µ ∈ TNI is non-persistent if there exists a transition τ ∈ T such
that τ enables µ and the firing of}τ (the reverse transition of τ) and µ are
concurrent

To illustrate this, consider the STG in Fig. 7a.  Using Chu's characterisation of persistency in
STGs, output c in the STG would be considered as non-persistent since a+ z  c+ (centre top
Fig. 7a) and the firing of c+ and a− are concurrent (lower left portion of the STG in Fig. 7a).
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However, since the state graph description of the STG (depicted in Fig. 7b) is semi-modular, it
is also persistent as defined in Definition 5 above!  More importantly however, as illustrated
in the example in Fig. 6, persistency as defined or characterised by Chu cannot ensure a
hazard-free implementation since the STG in Fig. 6 is persistent and yet its implementation
has a hazard.  Despite this, as we will show later, non-persistent STGs as characterised by Chu
do lead to hazard conditions in the implemented circuits.

(a )

(b)

a+

b+
c+

d+a- b-

c-d-

b+ c+

d+
a-

b-

c-

d-

00011001

1101 1011

11110101

01100111

0010 0000

0100

a+

c+

c+

b+

a-

c-

b-

•

Figure 7:  (a) An STG description with a non-persistent signal c and (b) its equivalent
semi-modular state graph

4. Detecting and Avoiding Hazards in Self-timed Circuits

The circuit hazards in examples of Fig. 5 and 6 have been explained by the switching of prime
implicants and implicates.  An alternative explanation is now proposed that leads to an
efficient approach to detect these hazards.  These hazards are explained in terms of function
hazards as defined below.

Definition 7:  Function hazard [13, 14, 19]
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A combinational circuit implementing a Boolean function, f, is said to contain a function
hazard for a p-variable input change from A = (a1,…ap, ap+1,…an) to
B = (}a1,…} ap, ap+1,…an) if

(1) f(A) = f(B) and
(2) both 1s and 0s are specified for function f within the Karnaugh map sub-cube

(ap+1,…an)

In other words, the output before and after the input change are identical and there exists
a path from A to B corresponding to the order of these input changes such that f changes.

z

To clarify this, consider again the firing of b+ z  a− in Fig. 5.  Note that a long propagation
delay through the AND gate deactivating prime implicant a before activating prime implicant
b⋅d is equivalent to the firing of a− z  b+ (i.e., the firing of b+ z  a− perceived in the reverse
order).  This corresponds to a traversal from state 1011 to state 0111 via state 0011 instead of
state 1111.  Since signal c has different implied values in states 0011 and 1111, a hazard is
produced.  Likewise, due to wire delays, the reversal of transitions d+ and a+ as perceived at
the input of the AND gate during the firing of d+ z  a+ in Fig. 6 will also result in a hazard.
Similarly, this is equivalent to a traversal from state 0000 to 1001 via state 1000 instead of
0001.  In short, due either to propagation and/or interconnection delays, a combination circuit
may perceive itself to be in a different state from the actual internal state.  This will result in a
hazard if the combinational circuit produces a different output at the altered state than it
otherwise would.

In formal terms, these hazard conditions can be summarised in the following theorems.

Theorem 1:  The smallest cube, Cp, which contains the transition s1[σ〉s2 from state s1
to s2 and all permutations of σ ∈ T* is one such that

C i
s i i

p ( )
( )

=
± ∉

−
#$&

1 if transition 
 (undefined ) otherwise

σ

where s1[σ〉s2 denotes the path from s1 to s2 associated with the firing of
transition sequence σ from state s1, while Cp(i) and s1(i) denote the logical state
of signal i in Cp and s1.

Proof:
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For some s1, s2 ∈ S and σ ∈ T*, the path s1[σ〉s2 and its permutations will traverse from
s1 to s2 over a region where all signal j ∈ J : j± ∈ σ changes during the transition.
Hence, the smallest cube containing this region is as defined above.

z

Theorem 2:  The combinational logic implementing function f derived from a
well-formed STG with unique state coding using hazard-free design techniques
[13 p.247-249, 14] is hazard-free if and only if

∀ σ ∈ T*; s1, s2 ∈ S : s1[σ〉s2
if f remains constant during the transition s1[σ〉s2 from s1 to s2 ⇒ only 1s or 0s
are specified for function f within the smallest cube containing path s1[σ〉s2

Proof:
Firstly, the use of a hazard-free design techniques will eliminate all except function
hazards of the implementation [13, 14, 19].  As we have shown earlier, propagation and
interconnection delays can alter the effective path perceived by the implementation.
However, if the above condition is satisfied, these altered paths will not result in
function hazards since function f produces the same output throughout all the possible
transitions from s1 to s2.  If this condition is not satisfied however, then there exists an
altered path s1[σ′〉s2 which results in a hazard as illustrated in Fig. 8.

z

σ

s2

s1

σ′

Region  where a  differen t
va lue is specified for
funct ion   f from those
a long the pa th   s1[σ〉s2

the smallest  cube
cover ing pa th   s1[σ〉s2

An a ltered pa th  a r ising from
in terna l delay which  t raverses
over  a  region  with  differen t
va lues for  f causing hazards to occur

Figure 8:  An altered path, s1[σ′〉s2, resulting in a hazard as it traverses over a region where
function f changes value.

Using these theorems, an algorithm for the detection of hazard susceptibility is developed.
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Algorithm for detecting hazard susceptibility conditions
Given a well-formed STG with unique state coding, ΣJ = 〈P, T, F, M0〉, for each
combinational logic, ηf, implementing logic function f:

Let ψs be a set of cubes denoting the cover in the Karnaugh map containing all
states, s, such that f(s) = 1 and

ψr, a cover containing states, s, such that f(s) = 0 (ψr =}ψs, the complement of ψs).

For each path s1[σ〉s2 for some s1, s2 ∈ S and σ ∈ T* such that f(s) remains constant
during the transition from s1 to s2

Let Cp be the smallest cube covering path s1[σ〉s2 and

ψc = Cp ∩ ψs/r where ψ
ψ

ψs r
r

s

f s
f s/
( )
( )

=
=

=
#$&

if 
if 

1
0

If ψc = ∅ then implementation ηf is free from hazard during the transition
s1[σ〉s2 from s1 to s2.

z

Notes: (i) To improve efficiency, the path s1[σ〉s2 can be selected to be the longest path
that f is constant in each case.

(ii) Covers (sets of cubes) could be replaced by sets of states, however with a penalty
of efficiency in implementation.

Theorem 3:  Given a transition s1[σ〉s2 for some s1, s2 ∈ S and σ ∈ T*, if there exists a
cube C such that

(1) si ∉ C ∀ state si ∈ s1[σ〉s2
(2) Cc = Cp ∩ C ≠ ∅.  In other words, the cube Cp covering transition s1[σ〉s2 and

all its permutations overlaps cube C

then

∀ σ′ ∈ T* : δ(s1, σ′) = s2 ∧ |σ′| = |σ| ∧ τ ∈ σ′ ⇔ τ ∈ σ

σ′° `TC = σ° `TC ⇒ s′j ∉ C ∀ s′j ∈ s1[σ′〉s2

where TC = JC × {+, −},
JC = {j ∈ J ° Cp(j) = ‘−’ ∧ CC (j) ≠ ‘−’} (i.e., JC = {j ∈ J ° Cc(j) ≠ ‘−’})
and
σ° `TC denotes the projection of sequence σ onto the set of transitions TC.
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In other words, given a transition s1[σ〉s2 and cube C such that Cp covering transition
s1[σ〉s2 shares a common region with cube C; if transition s1[σ〉s2 only traverses
through a region which does not overlap cube C then transition s1[σ′〉s2, a permutation
of transition s1[σ〉s2, will also be restricted to a region which does not overlap cube C if
σ′° `TC = σ° `TC.

Proof:
Firstly, notice that:

(1) given transition s′[σ1〉s″ for some s′, s″ ∈ S and σ1 ∈ T*, the value of s″(j) for
some signal j ∈ J is determined by the value of s′(j) and the sequence
σ1° `{j+, j−}.  In other words, the value of signal j in the starting state s′ and
the transitions of signal j in the sequence σ1.

(2) ∀ s ∈ S : s ∈ Cp
s ∉ C ⇒ ∃ j ∈ J : s(j) ≠ Cc(j) ∧ Cc(j) ≠ ‘−’

⇒ ∃ j ∈ JC : s(j) ≠ Cc(j) since Cc(j) ≠ ‘−’ ∀ j ∈ JC

From (1) and (2), the mutual exclusion of transition s1[σ〉s2 and cube C can be stated as

∀ si ∈ s1[σ〉s2
∃ j ∈ JC : si(j) ≠ Cc(j)

In other words, the ordering of transitions τ ∈ TC in σ is one such that mutual exclusion
of transition s1[σ〉s2 and cube C is assured.  As such, σ′° `TC = σ° `TC would also imply
that transition s1[σ′〉s2 also will traverse only through a region which is mutually
exclusive of C.

z

The restriction of σ′° `TC = σ° `TC is sufficient but not necessary for the transition s1[σ′〉s2 to
avoid the cube C.  We can relax this ordering by considering the effect of these transitions on
the state relative to C.  For a signal x ∈ JC, a transition τ of signal x has the effect of shifting
the state value away from cube C if x ≠ Cc(x) after the firing of transition τ.  It has the reverse
effect of shifting towards and possibly into cube C if x = Cc(x) after the firing of transition τ.
A transition τ of signal x will not result in a shift into cube C if:

(1) transition τ is a transition which shifts away from cube Cc or
(2) there exits an earlier transition of another signal y ∈ JC such that y ≠ Cc(y)

after the firing of transition τ.
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From theorem 3 and (1) & (2) above, an algorithm to determine the critical timing which must
be preserved to avoid function hazard is as follows:

Algorithm to determine the critical timing which must be preserved to
avoid function hazard
For a combinational circuit, ηf, implementing logic function f; if there exists a
transition s1[σ〉s2 and the corresponding cube Cp and cover ψs/r such that
ψc = Cp ∩ ψs/r ≠ ∅, then the critical timing which must be preserved to avoid the hazard
condition during the transition s1[σ〉s2 from state s1 to s2 can be derived by determining
the critical timing required to avoid each cube Cc ∈ ψc as follows:

let σc = σ° `TC
for each Cc ∈ ψc

Let JC = {j ∈ J ° Cc(j) ≠ ‘−’ ∧ CP(j) = ‘−’},
TC = JC × {+, −},
Tz

C = {τ ∈ TC ° the firing of transition τ will shift away from cube C} and
Tz

C = {τ ∈ TC ° the firing of transition τ will shift towards from cube C}.
The ordering of all transitions τ ∈ TC along the path from s1 to s2 should be
preserved such that the firing of these transitions will not result in a shift into
cube Cc (i.e., ∀ τ2 ∈ Tz

C, if ∃ τ1 ∈ Tz
C such that σc° `{τ}1 τ1 τ2} = τ1 τ2 …

or}τ1τ1 τ2 …, then the ordering of transition τ1 must preceed τ2).
z

As an example, consider the implementation c = b⋅d in Fig. 9.  Notice that ψs = {−1−1} while
ψr = {−0− −, − − −0}.  During the firing of c− z  d− z  b+ z  a− from state 1011 to 0100, we
have Cp = {− − − −} giving ψc = Cp ∩ ψs = {−1−1} ≠ ∅.  Using Theorem 3, JC = {b, d} and
hence the ordering of (c−; d−; b+; a−)° `TC = (d−; b+) should be preserved in order to avoid
function hazard from occurring during the transition from state 1011 to 0100.  In other words,
the relation between the delay from b to c and from d to c (denoted in Fig. 9b as ∆1 and ∆2
respectively) should be such that the ordering of d− z  b+ will always be perceived by the
circuit in the right order.
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Figure 9:  (a) The K-map for a signal c with its state graph superimposed and (b) the
implementation c = b⋅d.

In much the same way, the firing of c− z  b− z  d+ from state 0110 to 0001 in the example in
Fig. 5 will also be detected using the above algorithm.  In this example, notice that
ψs = {1− − −, −1−1} while Cp = {0− − −}.  Hence, ψc = Cp ∩ ψs = {01−1} and JC = { b, d}
indicating that the ordering of transitions (c− z  b− z  d+)° `TC = (b−; d+) must be preserved to
avoid the hazard condition.

This algorithm for determining timing constraints to avoid hazards has no knowledge of
pratical circuit delays, wire delays and input transition separations.  Consequently, many of
the timing constraints will be met by physical realisations.  A CAD system could eliminate
many constraints automatically.  For example in Fig. 9, if ∆1 is known to be always less than
∆2, the ordering b− z  d+ is guaranteed.

5. A Comparison with Existing Hazard Detection and Prevention
Methods

In this section, the hazard detection algorithm described above is compared with the property
of persistency utilised in Chu's [3] technique as well as the hazard removal procedure
proposed by Lavagno et al. [5].

As depicted in Fig. 10a, an STG is non-persistent if ∃ µ ∈ TN and τ ∈ T such that transition τ
enables transition µ while the firing of µ and}τ are concurrent.  Using σ ∈ T* to denote the
sequence between transition τ and}τ, a non-persistent structure in an STG will transform to a
structure in its state graph as depicted in Fig. 10b.  In this structure, transition µ is not enabled
in state s1 while it remains enabled throughout the transition s2[σ }τ〉s4.  Taking τ and µ as
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transitions of signal x and y respectively, notice that the smallest cube Cp containing transition
s2[σ }τ〉s4 and its permutations will have Cp(x) = ‘−’.  As such, Cp ∩ s2 ≠ ∅ and s1[τ〉s2 will
further imply that Cp ∩ s1 ≠ ∅ (i.e., cube Cp also contains state s1).  However, since transition
µ is not enabled in state s1, both 1s and 0s will be specified in cube Cp in the Boolean
functions implementing signal y or the set/reset signal to the RS flip-flop implementing signal
y.  In other words, non-persistency corresponds to a hazard condition as defined in the above
theorems.

(a ) (b)

s1 s2

s3s4

s5

Figure 10:  (a) The characterisation of non-persistency in STG and (b) its corresponding
structure in the state graph description.

Additionally, as depicted in Fig. 11, the insertion of a persistent constraint to ensure
persistency will lead to the elimination of path s3[}τ〉s4[µ〉.  This will reduce the sequence of
transitions where µ remains enabled from transition s2[σ }τ〉s4 to transition s2[σ〉s3 or shorter,
eliminating the hazard condition in this case.  However, as illustrated in the example in Fig. 6,
which shows a persistent STG with a hazard in its implementation, persistency alone is
insufficient to eliminate all of these hazard conditions.

(a ) (b)

p

s1 s2

s3

s5

s4
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Figure 11:  (a) The insertion of a persistent constraint to ensure the linear ordering of
transitions µ and}τ.  (b) Its corresponding structure in the state graph.

In the hazard removal procedure proposed by Lavagno et al. [5], these hazard conditions are
attributed to the switching of active prime implicants (implicates) as described earlier.
Accordingly, the hazard detection technique employed in this procedure is based
fundamentally on the detection of a transition sequence t2± z  t1± where transition t1±
switches off a prime implicant (implicate) while transition t2± switches on another.  Using the
above notation, a summary of this procedure is as follows.

Hazard removal procedure (taken from procedure 3.2 [5 p.305-306])
Given an implementation ηf implementing function f,

for each path s1[σ〉s2 such that:
• s1 and s2 have a maximal Hamming distance and
• f(s1) = f(s2) = f(sj) for all sj on a state graph path from s1 to s2:
(a) let C be the smallest cube covering states s1 and s2.
(b) if f(s1) = f(s2) = 1 then:

for each cube C0 ∈}ψs (the complement of ψs, see Appendix) intersecting C
and for each pair of distinct implicants C1, C2 ∈ Cs ∩ C such that the
following Hamming distances are satisfied

d(C0, s1) = d(C1, s1) + 1, d(C1, C0) = 1, d(C0, s2) = d(C2, s2) + 1 and
d(C2, C0) = 1

A. let t1± be the transition moving from C1 to C0 (i.e., ‘t1−’ if C1(t1) = 1 and
C0(t1) = 0, ‘t1+’ if C1(t1) = 0 and C0(t1) = 1) and t2± the transition moving
from C0 to C2.

B. let d1 be a lower bound on the delay along the path from input t1 to the
output of ηf.

C. let d2 be an upper bound is the delay along the path from input t2 to the
output of ηf.

D. let d3 be a lower bound on the delay between transition t1± and t2±.
E. if (d2 − d1) > d3 then hazard condition exists.

(c) else (f(s1) = f(s2) = 1):
similar to step (b) above, but replace ψs with ψr.

z

Recall that in our algorithm, cover ψc = Cp ∩ ψs/r for each maximal path, s1[σ〉s2, is used to
derive all the critical paths in the implementation associated with the transition from s1 to s2.
Compared with the hazard removal procedure proposed in Lavagno et al. [5], the need to
search for cubes C0, C1 and C2 satisfying a set of criteria before the critical ordering of only
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two signal transitions is determined makes the procedure less efficient than our algorithm.
Additionally, the hazard removal procedure proposed in [5] does not detect all hazards.  For
example in Fig. 12, hazards in the implementation c =}a ⋅}b⋅d during the firing of d− z  a− and
a+ z  b− will not be detected by the procedure.  This is due to the absence of distinct C1 and
C2 satisfying the Hamming distance constraints.
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×

×

×

×

×

a+

b+

c+

d+

a-

b-

c-

d-

c =}a ⋅}b⋅d

ψs = {00−1} and ψr = {1− − −, −1− −, − − −0}

Hazard removal procedure proposed in [5] Our algorithm

Consider the path “1111[b− c− d− a−〉0000” with maximal

Hamming distance.

Consider the maximal path from 0111 to 0000

s1 = 1111, s2 = 0000, Cp = − − − − and

Cp ∩ ψr = {1− − −, −1− −, − − −0}

s1 = 0111, s2 = 0000, Cp = − − − −

Cp ∩ ψs = {00−1} ⇒ JC = {a, b, d}

Note that ∃⁄  C0 ∈ ψs and C1, C2 ∈ Cp ∩ ψr such that

d(C0, C1) = 1, d(C0, C2) = 1, d(s1, C0) = d(s1, C1) + 1 and

d(s2, C0) = d(s2, C2) + 1 resulting in a failure to detect

any hazard in the implementation  c =}a ⋅}b⋅d.

σ° `TC = a+ b− d− a−

Tz

C = {a+, d−}, Tz

C = {b−, a−}
detecting the critical ordering d− z  a− and a+ z  b−

Figure 12:  An example where the hazard removal procedure proposed in [5] fails to detect
hazard conditions in the implementation c =}a ⋅}b⋅d.

6. Conclusion

This paper has shown that previous approaches to achieve hazard-free implementations are
inadequate.  A new efficient technique has been proposed which detects hazards in
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implementations and determines critical orderings of signal transitions that are required to
avoid these hazards.
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APPENDIX:  Set operations for cubes in ternary representation
MUTUAL EXCLUSION
Given two cubes, C1 and C2, C1 ∩ C2 ≠ ∅ (i.e., C1 and C2 do not overlap) if and only if there
does not exist a literal, x, such that C1(x) ≠ C2(x) and neither of which equals ‘−’.

Proof:
Given two cubes, C1 and C2, if there exists a literal x which has a value 0 in C1 and a value 1
in C2 (or vice versa), this implies that C1 is within a region where x is always 0, while C2 is
within another region where x is always 1 (or vice versa).  Since these regions are mutually
exclusive, the two cubes, C1 and C2, will also be mutually exclusive.

z

INTERSECTION
Given two cubes, C1 and C2, a third cube C3 denoting the intersection of C1 and C2 can be
obtained using the following algorithm.

if there exists a literal x such that C1(x) ≠ C2(x) and neither of which equal ‘−’ then
C3 = ∅

else
for each literal compute

C i
if C i C i or if C i and C i or if C i and C i
if C i C i or if C i and C i or if C i and C i
if C i C i

3

1 2 1 2 1 2

1 2 1 2 1 2

1 2

0 0 0 0
1 1 1 1( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

=

= = = = − = − =

= = = = − = − =

− = = −

#
$%
&%

              
              
  

In this paper, a set of cubes within a Karnaugh map is called a cover.  The intersection of a
cube C and a cover ψ is defined to be the cover

C C C Ci ii    ∩ = ∩ ∈ψ ψ! "! .



26

Examples:
0-0-

d

00 01 11 10
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11
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cd

a

b

c

--1-

-1-1

-1-1  {0-0-, --1-} = {0101, -111}

{0101, -111}
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cd

a

b

c

d

---0

-1--

-10-

---0  -1-- = -10-

COMPLEMENT
Given a cube C1,}C1 (the complement of C1) is derived using the algorithm:

For each literal, x, such that C1(x) is either a 1 or 0
invert the value of C1(x) and set the other literals to ‘−’

The union of the set of cubes obtained is the complement of C1

To find the complement of a cover ψ

• determine the complement for each of the cube Ci ∈ ψ

• find the intersection of all}Ci (the complement of Ci) derived
• the union of all the cubes obtained is the complement of ψ

Example:

00 01 11 10

00

01

11

10

ab
cd

a

b

c

d

-01-

10--

--10
-10-

-1-1

0-0-

ψ = {0−0−, −10−, −1−1}
Let C1 = (0−0−), C2 = (−10−) and C3 = (−1−1)
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C1 = {1− − −, − −1−}, C2  = {−0− −, − −1−}, C3 = {−0− −, − − −0}
C C C= C

= - -,  - ,  -,  - ,  - -,  - ,  - -,  - -
1 2 3

10 10 0 101 1 10 01 010 01 10
∩ ∩

' (
C C Ci ii : ∈ =! " ' (10 01 10- -,  - -,  - -!
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Figure 1: (a) The block description of a Muller-C element, (b) its STG description and (c) its
Petri Net equivalent.

Figure 2: The state graph description of the Muller-C element depicted in Fig. 1.
Figure 3: Ternary representation of cubes within a Karnaugh map.
Figure 4: The semi-modular structure corresponding to the concurrent firing of transitions

τ1 and τ2 from state s1.
Figure 5: (a) An STG with (b) its state graph superimposed on the Karnaugh map for signal

c.  (c) The implementation of signal c in the SOP form and (d) the timing diagram
analysing the firing of b+ followed by a− and its effect on signal c.

Figure 6: (a) An STG and (b) its semi-modular state graph description superimposed on the
Karnaugh map of signal c.  (c) The implementation c =}d⋅a can be viewed as a
single prime implicant POS form or a double prime implicates SOP form and (d)
the timing diagram analysis the condition which can results in a hazard.

Figure 7: (a) An STG description with a non-persistent signal c and (b) its equivalent
semi-modular state graph

Figure 8: An altered path, s1[σ′〉s2, resulting in a hazard as it traverses over a region where
function f changes value.

Figure 9: (a) The K-map for a signal c with its state graph superimposed and (b) the
implementation c = b⋅d.

Figure 10: (a) The characterisation of non-persistency in STG and (b) its corresponding
structure in the state graph description.

Figure 11: (a) The insertion of a persistent constraint to ensure the linear ordering of
transitions µ and}τ.  (b) Its corresponding structure in the state graph.

Figure 12: An example where the hazard removal procedure proposed in [5] fails to detect
hazard conditions in the implementation c =}a ⋅}b⋅d.


