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Abstract

Practicing yoga benefits both mental and nervous system and helps mitigate several health problems. However, not perform-
ing yoga in the correct manner can worsen the symptoms as well. This work presents a novel technology-driven approach
named spondylitis-related yoga MediaPipe angle-based regularized network (SpY_MARNet) to assist people to perform yoga
postures for treating spondylitis in the correct way. This work enables real-time interaction and provides immediate feedback,
assisting in correcting postures and suggesting modifications if necessary. This work also monitors the duration for which
each pose is retained which is a vital aspect of yoga practice. Also, the users are categorized into beginner, intermediate,
and advanced levels based on their yoga performance. By using the model we achieved an accuracy of 99.7%. The results
indicate significant promise in aiding individuals with spondylitis, opening avenues for further research and application in

other physical therapies and wellness practices.

Keywords SpY_MARNet - Spondylitis - Random forest - Deep learning - Pose estimation - Pose correction - Pose
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Introduction

With the growing popularity in practice of yoga, recent
epidemiological research has highlighted the injuries that
are associated with yoga by utilizing data from the National
Electronic Injury Surveillance System (NEISS) [1]. It
uncovers an upward trend in yoga injuries with participants
of age more than 65 years. People doing yoga independently
further increase the risk of injuries. This background sets the
stage for our research, which aim to enhance the safety and
effectiveness of yoga practice.

Some yoga posture soothes the symptoms of spondylitis,
helping participants in flexibility, endurance, strength, and
mental peace. However, the effectiveness of yoga largely
depends on how well the participants is performing yoga
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and the time duration for which the position has being held.
There is a necessity to not only let the participants know
about the correctness of yoga posture but also the time-dura-
tion for which he has held the pose. The integration of artifi-
cial intelligence (AI) in monitoring and guiding yoga prac-
tice presents a transformative solution. Al-driven systems
that can provide real-time feedback for every wrong posture
to ensure yoga is performed with maximum accuracy. There
is also a need for enhanced safety and effectiveness in yoga
practice to be addressed by introducing a cutting-edge com-
puter-vision-based methodology. When performing any yoga
postures, it is important that the users are free from wearing
any additional wearables or hardware as it hampers their
mobility. This makes vision bases systems a good choice as
the user need not wear any additional gadgets while doing
yoga. While IMU sensors do offer advantages like high pre-
cision in motion tracking and robustness to environmental
lighting conditions, they come with limitations such as the
need for multiple devices to be worn, potential discom-
fort, and additional costs for hardware. The vision-based
approaches, on the other hand, leverage widely available
devices like cameras, which significantly lower the barrier
to entry. A comparative analysis between these modalities
would highlight the trade-offs: vision-based systems excel
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in accessibility and scalability, while IMU sensors provide
direct, reliable motion data but at the cost of usability and
affordability. This trade-off aligns with our goal of creating a
practical and inclusive solution for assessing yoga postures.
Future work could explore hybrid approaches to combine
the strengths of both modalities for enhanced accuracy and
user experience.

A deep learning novel convolutional neural network
(CNN)-based approach for human pose estimation which
is distinctive in its creation of part heatmaps for individ-
ual body parts, using a cascading CNN structure [2]. The
approach enhances the precision of pose estimation, cru-
cially focusing on the subtleties of each body part where
initially body parts are detected via a part detection network,
and subsequently refining these detections through a regres-
sion sub network. Crucially, this method addresses and over-
comes the limitations inherent in holistic models, offering
more accurate and granular pose estimations, particularly
in images characterized by occlusions and complex interac-
tions. This advancement in pose estimation technology is
particularly pertinent to our work, as it aligns with our goal
of developing a system that provides nuanced and accurate
feedback on yoga poses, catering to the diverse needs and
conditions of individuals. But the CNN-based approach,
especially one that involves cascading networks for partial
heatmap generation and refinement, can be computationally
more intensive. This might require more powerful hardware
and could be less efficient in terms of processing speed,
making it less suitable for real-time applications or devices
with limited computational resources.

The proposed system involves a real-time yoga posture
detection model specifically designed for spondylitis treat-
ment with utilization of the Mediapipe framework [17] for
posture detection and analysis by converting skeletal data
into angles and distances for posture evaluation. Using the
posture evaluation to a machine learning algorithm that
evaluates the correctness of poses, tailored for different skill
levels and along with it recording and monitoring the dura-
tion of each yoga pose and providing immediate feedback
on the accuracy and duration of poses thereby enhancing the
effectiveness of yoga practice for individuals with spondyli-
tis. This work leverages computer vision to provide real-time
feedback for yoga poses. This technology aims to create a
safer and more effective yoga experience. To address pri-
vacy concerns, the system extracts only essential features
like joint landmarks without storing or transmitting raw
images. This approach minimizes the risk of sensitive visual
data being exposed. To mitigate low quality visual sensing,
Mediapipe, a robust framework for pose estimation, known
for its ability to work effectively under varied conditions,
including low-resolution cameras and suboptimal lighting
is used. This choice helped mitigate the impact of poor vis-
ual quality to a significant extent. To ensure compatibility
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across a wide range of devices, the system was optimized
for real-time performance and low computational overhead.
By relying on lightweight models and efficient preprocess-
ing, the framework remains accessible even on devices with
limited hardware capabilities. By tailoring the practice to
individual needs, it can minimize injury risk and maximize
the therapeutic benefits of yoga. This research endeavors to
merge the ancient wisdom of yoga with contemporary Al
technology, offering an innovative solution for managing
spondylitis. The implications of this study extend beyond
spondylitis management, potentially revolutionizing the
way we approach physical therapy and wellness through
technology-enhanced, personalized care. By harnessing
AT’s capabilities in accurately assessing and guiding yoga
postures, this research not only provides a supportive tool
for individuals with spondylitis but also paves the way for
broader applications in various musculoskeletal conditions
and rehabilitation scenarios. This fusion of traditional prac-
tices with modern technology holds promise for improving
quality of life and health outcomes, democratizing access
to specialized therapeutic guidance, and fostering a deeper,
more informed engagement with personal health and well-
ness routines.
The main contributions in this work are listed below:

e This work integrates Al with traditional yoga practice by
fusing advanced Al technologies, such as Mediapipe for
body landmark extraction, with the traditional practice of
yoga to provide a novel approach for health and wellness,
particularly benefiting individuals with spondylitis has
been proposed.

e This work promotes real-time pose correction by pro-
viding immediate feedback on yoga poses performed
thereby helping the users to perform the yoga posture
in the right way, which is critical in preventing any ill
effects and ensuring the effectiveness of yoga practice.

e This work monitors the duration and accuracy of yoga
poses over time and accordingly the users are categorized
into different proficiency levels (beginner, intermediate,
and advanced).

e The proposed work measures the accuracy and the endur-
ance of users while performing yoga poses using a new
metric. It also quantitatively measures the improvement
over time in performing this yoga poses. By comparing
current performance metrics—such as pose accuracy,
hold duration, and overall session quality—with histori-
cal data, the system can provide valuable insights how
much user has improved over time. This encourages users
by highlighting their progress, areas of improvement, and
setting achievable goals for further advancement.

e To further encourage user engagement, the system visu-
alizes improvement using line and bar graphs, offering
valuable feedback and boosting motivation.
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The manuscript is structured such that section "Related
work" walks through the various contemporary approaches
carried out towards yoga posture recognition. Section "Pro-
posed system" details the proposed work while section
"Experimental results and analysis" discusses in detail about
the experimental results. Finally, section "Conclusion and
future work" forms the conclusion section that discusses the
highlights of this work and the scope for future expansion
of this work.

Related work

This section discusses about a few contemporary works
related to yoga posture recognition. The work in [3] exem-
plifies the integration of deep learning in the health and
wellness sector. The development of a self-assistance system
for real-time identification and correction of yoga postures
and hand mudras leverages the YOGI dataset. By utilizing
skeleton models for feature extraction and machine learn-
ing models, notably XGBoost with RandomSearch CV, for
recognition, the system achieves an impressive accuracy of
99.2%. This innovation is further extended to a mobile appli-
cation, transforming it into a virtual yoga instructor, thus
enhancing yoga practice through technological means. In
a parallel development, a novel approach highlighted in [4]
introduces a deep learning model adept in real-time camera
pose estimation. Employing convolutional neural networks
to analyze single RGB images, PoseNet excels in diverse
settings, from indoor environments to large-scale outdoor
scenes. Its robustness against various challenges, including
variable lighting and motion blur, underscores its potential
applications in augmented reality and robotics, with nota-
ble accuracy metrics in different scenarios. The work [5]
further expands the scope of real-time recognition technol-
ogy. By adopting the motion history image (MHI) technique,
this system effectively captures and analyzes the temporal
aspects of hand gestures. Demonstrating high efficiency and
accuracy, with an average accuracy of 94.1% and a process-
ing time of 3.81 ms per frame, this model sets a benchmark
in gesture recognition, applicable in real-time environments.

The work [6] introduces a system for recognizing sign
language words using the Kinect sensor and a multi-stream
hidden Markov model (MS-HMM). The approach focuses
on analyzing hand movements, positions, and shapes to
interpret sign language. It uses two datasets for Japanese
and Italian sign languages. The methodology is innovative
in integrating Kinect’s capabilities with MS-HMM, demon-
strating the potential for enhanced sign language recogni-
tion. The paper details the effectiveness of this approach in
bridging communication gaps for the deaf and hard of hear-
ing communities. The system achieves an overall efficient

performance in sign language recognition tasks, demonstrat-
ing the efficacy of the combined approach.

The authors of work [7] employs the tf-pose-estimation
algorithm, creating a custom dataset, YOGI, with images of
ten yoga poses. The methodology includes extracting skel-
etal joint angles and applying machine learning classifiers
for pose identification. The study focuses on enhancing the
accuracy of pose recognition, contributing to the field of
smart health care and personal fitness. The research presents
a novel approach to integrating technology with traditional
practices like yoga. The best-performing model, Random
Forest classifier, achieved an accuracy of 99.04%.

A comprehensive overview of methods for evaluating
human actions using vision-based technologies is provided
by [8]. The paper discusses the evolution of these methods,
categorizing them into traditional handcrafted feature-based
methods and contemporary deep learning approaches. It
highlights key challenges in action evaluation such as deal-
ing with complex backgrounds and varying lighting condi-
tions. The survey also covers various benchmark datasets
used in this domain and performance evaluation metrics.
The paper is valuable for understanding the breadth of
methodologies and their applications in different contexts,
offering insights into the strengths and limitations of current
approaches in vision-based human action evaluation.

Authors of [9] introduced an advanced method for ana-
lyzing and evaluating fitness exercises using 2D and 3D
skeleton data. This approach employs a unique dataset, Fit-
ness-28, which includes various fitness actions. The method-
ology involves precise skeleton data extraction and process-
ing, feature encoding, and the use of sophisticated classifiers
like SVM and CNN for action analysis. This comprehen-
sive framework allows for the effective evaluation of fitness
actions, offering insights into the quality and correctness of
exercises performed. The approach achieves high accuracy,
with an average of 97.24% in front view recognition on the
Fitness-28 dataset for SVM.

A novel approach to gait [10] recognition, focusing on
handling both known and unknown covariate conditions.
The methodology involves a combination of convolutional
neural networks (CNN) and a discriminative feature-based
classification method. The research emphasizes addressing
challenges in gait recognition due to variations like cloth-
ing and walking speed. The study employs the CASIA and
OUR-ISIR gait datasets for analysis and validation. This
approach demonstrates significant advancements in gait rec-
ognition under varying conditions, achieving high accuracy
rates, and offering insights into handling unknown covariates
in gait analysis. The reported accuracy is 90.32% for the
CASIA dataset under unknown covariates.

A novel method for real-time human pose tracking tai-
lored for mobile devices is provided in [11]. The paper intro-
duces a lightweight CNN architecture, BlazePose, capable
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of running efficiently on-device. It uses both heatmap-based
and regression-based approaches to detect 33 body key-
points. The model was trained and evaluated using a dataset
specifically curated for common poses and fitness exercises.
BlazePose offers a significant advancement in achieving a
balance between high accuracy and real-time performance
on mobile devices, addressing the challenges of computa-
tional limitations and the need for precise pose tracking in
various applications. BlazePose achieves a PCK@0.2 score
of 97.2% after re-annotation of AR dataset independently.

The work in [12] presents a methodology for yoga posture
recognition using Microsoft Kinect. It focuses on real-time
detection of human joint points to evaluate the accuracy of
yoga poses. The proposed approach utilizes Kinect to cap-
ture the 3D coordinates of body joints, calculating angles
between them to assess pose correctness. This system offers
a novel means for monitoring and guiding yoga practice,
especially useful in fitness and rehabilitation contexts. The
paper demonstrates the potential of Kinect in enhancing the
precision and effectiveness of yoga training.

The work in [13] presents a novel approach to human
pose estimation, focusing on structured feature learning.
Their methodology involves reasoning correlations among
body joints at the feature level, a departure from traditional
methods that focus on score maps or predicted labels. The
researchers introduce geometrical transform kernels imple-
mented within a convolution layer, enabling joint learning
of features, and their relationships. They propose a bi-direc-
tional tree structured model for optimizing feature channels
at each body joint, significantly improving feature learning.
The framework demonstrates substantial improvement in
mean PCP on the LSP and FLIC datasets, showcasing its
effectiveness in pose estimation.

To deal with such computational issue, there is a need
to build further upon technological advancements in the
domain of posture recognition. An innovative Y_PN-MSSD
[14] model synergistically combines Pose-Net and Mobile-
Net SSD, leveraging the TensorFlow Lite MoveNet frame-
work for enhanced yoga posture recognition. What sets the
Y_PN-MSSD model apart is its capability to live-track and
correct yoga poses in real-time, demonstrating high accu-
racy and efficiency. This model is particularly beneficial in
online yoga practice environments, where direct instructor
guidance is absent. It bridges the gap between traditional
and digital yoga practice, ensuring users maintain correct
posture, thereby enhancing the overall safety and effective-
ness of their practice.

A vision-based methodology for yoga pose grading has
been proposed in [15]. The approach centers around the
extraction and encoding of human body skeleton key points
from images of yoga poses, employing contrastive skeleton
feature representations. This method stands out in its ability
to handle the inherent variations in pose images, thanks to
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the use of both coarse and fine triplet examples for feature
comparison.
The research gaps identified are listed below:

e While short-term improvements may be observable,
tracking progress over an extended period is essential
for assessing the efficacy and sustainability of yoga inter-
ventions. Existing systems often lack a robust progress
monitoring component, making it challenging to evaluate
the long-term impact of yoga practice on conditions.

e Progress monitoring in yoga practice is another research
area that can be focused. This entails systematic tracking
of improvements in accuracy of pose execution, endur-
ance during poses, duration held over time, and overall
performance enhancement. Implementing progress moni-
toring mechanisms could provide valuable insights into
the effectiveness of yoga interventions in managing their
condition.

The proposed system is developed to address the above
gaps by providing real-time feedback and correction on yoga
poses. Also, the proposed system takes into consideration
the endurance level which is not considered in [14] and
includes real time feedback on the fly which is not avail-
able in [12]. In addition, the posture retention duration is
also measured in the proposed work when compared with
[12] and [14]. The proposed work aims to reduce the risk of
yoga-related injuries, particularly in populations more prone
to such injuries, like older adults. By successfully imple-
menting and testing this system, the work aims to contribute
valuable insights and methodologies to the broader field of
Al applications in wellness, rehabilitation, and smart health
care systems.

Proposed system
Dataset

This work employs a specialized dataset comprised solely
of images annotated with yoga posture labels, specifically
focusing on poses beneficial for individuals managing spon-
dylitis. This dataset has been compiled from various Kaggle
repositories and is significantly augmented by the images
provided by paper [16]. The images of 10 different yoga
posture namely: Adho Mukha Svanasana (Downward fac-
ing dog), Anjaneyasana (Crescent Lunge), Ardha Matsyen-
drasana (Sitting Half-Spinal Twist), Bhujangasana (Cobra
Pose), Dhanurasana (Bow Pose), Marjariasana (Cat Pose),
Setu Bandha Sarvangasana (Bridge Pose), Shishuasana
or balasana (Child pose), Tadasana (Mountain pose) have
been gathered. The images in our dataset have undergone
meticulous curation and cleaning to ensure the exclusion of
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any outliers, guaranteeing a high-quality, consistent set of
data for analysis. Table 1 lists the details pertaining to the
classwise image count. To handle dataset bias effectively,
this approach focuses on joint angles rather than absolute
positions. Regardless of body type, the angles between joints
for a correctly performed yoga pose are largely consistent,
making the evaluation less dependent on individual physi-
cal characteristics. This feature helps the model generalize
better across users with diverse body types.

The dataset’s exclusive focus on yoga asanas related to
spondylitis management ensures its direct applicability to
our study’s goal of enhancing therapeutic yoga practice.
By manually extracting and analyzing body landmarks and
geometric relationships within these images, our research
aims to develop a nuanced understanding of pose execution,
offering a novel approach to assessing and improving yoga
practice for spondylitis relief, thereby contributing valuable
insights to the intersecting fields of health, wellness, and
technology.

Proposed SpY_MARNet model

The primary objective of SpY_MARNet model is to revo-
lutionize the way individuals engage with yoga practices,
particularly those managing conditions like spondylitis,
through the integration of advanced artificial intelligence.
This ambitious goal is realized through a meticulously
designed system that incorporates several key features and
capabilities: (i) a versatile and robust computational frame-
work capable of processing complex body landmark data,
ensuring scalability for a wide range of yoga postures; (ii)
a user-centric design philosophy that prioritizes intuitive
interaction and personalized feedback for practitioners at
varying levels of proficiency; (iii) the capacity to efficiently
process, analyze, and utilize extensive datasets of body land-
marks, angles, and distances, enabling users to receive real-
time feedback and insights tailored to their unique practice
needs; (iv) sophisticated deep learning algorithms that not

Table 1 Dataset class labels and their respective image count

Yoga pose (Class Label) Image count

Adho Mukha Svanasana (Downward facing dog) 147
Bhujangasana (Cobra Pose) 142
Ardha Matsyendrasana (Sitting Half-Spinal Twist) 153
Bitilasana (Cow pose) 152
Setu Bandha Sarvangasana (Bridge Pose) 155
Anjaneyasana (Crescent Lunge) 151
Tadasana (Mountain pose) 151
Marjariasana (Cat Pose) 140
Shishuasana or balasana (Child pose) 141
Dhanurasana (Bow Pose) 140

only provide deep analytical insights into posture execution
but also enhance user interaction by suggesting corrections
in real-time. Utilizing color-coded line visuals, the system
intuitively indicates the correctness of a pose, with vary-
ing colors. This interactive feedback mechanism facilitates
a more informed and effective yoga practice, enabling users
to adjust their poses instantly and accurately based on the
visual cues provided; and (v) the deployment of an innova-
tive artificial dense neural network architecture, designed
to seamlessly integrate with physical practice, providing a
bridge between traditional yoga and the cutting-edge realm
of artificial intelligence. This approach not only enhances
the practice of yoga but also contributes significantly to
the health and wellness of individuals by offering a smart,
responsive, and scientifically grounded practice tool.

Mediapipe

Mediapipe is used in computer vision based applications,
where it excels in tasks ranging from facial detection to
complex pose estimation. It has 33 extracted landmarks
using Mediapipe posture landmarker model. MediaPipe’s
architecture is designed around a graph-based framework,
facilitating the seamless integration and coordination of var-
ious processing components. These components, or nodes,
are adept at performing specific functions on the streaming
data, from initial acquisition to final output analysis. At the
heart of MediaPipe’s capabilities are its pre-trained machine
learning models, which are optimized for real-time applica-
tions across platforms. These models enable the extraction
of meaningful information from visual data such as identify-
ing key points on human hands, faces, and bodies in images
and videos as shown in Fig. 1. This extraction is akin to
the convolution operation in CNNs but extends beyond to
more specialized tasks. This enables the dynamic detection
and tracking of objects and gestures in real-time, providing
a foundational technology for developing interactive appli-
cations that respond intuitively to human movements and
behaviors. In essence, MediaPipe democratizes access to
advanced computer vision technologies, offering a robust
and efficient solution for developing applications that require
real-time processing and interpretation of visual data.

SpY_MARNet model uses Mediapipe to extract pos-
ture landmark and perform conversion of landmarks into
angles for training and testing as shown in Fig. 2. The angle
between joints is computed by considering three consecu-
tive landmarks, typically representing key anatomical points
such as the knee, hip, shoulder, and elbow as shown in (1).
This computation involves evaluating the arctangent func-
tion of the differences in coordinates of these consecutive
landmarks.

Let A, B and C be three landmarks, then to find ZABC:
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Fig. 1 Mediapipe pose land-
marker model tracking 33 body
landmarks in real life images
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Regularized neural network

A regularized neural network (RegNN) represents an
advanced iteration of neural network models, incorporating
mechanisms designed to prevent the common problem of
overfitting, thereby enhancing the model's ability to gen-
eralize to unseen data. Regularization techniques such as
Dropout and Batch Normalization play pivotal roles within
these networks. Dropout layer, randomly deactivates a subset
of neurons during the training process, forcing the network
to learn more robust features that are not reliant on any small
set of neurons whereas batch normalization standardizes the
inputs to a layer for each mini-batch, stabilizing the learn-
ing process by reducing the internal covariate shift. Much
like the convolution operation in CNNs structures data for
hierarchical feature extraction, regularization techniques in
such structure combat overfitting, ensuring that the network
learns patterns that are truly representative of the underlying
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data distribution. This makes RegNN exceptionally versa-
tile and effective across a broad spectrum of tasks, from
sequence prediction to complex classification challenges, by
fostering models that perform well not just on the training
data but also on new, unseen data.

SpY_MARNet model (Fig. 3) is trained using a split of
60% for training and 40% for validation, ensuring a robust
evaluation of its predictive capabilities. The architecture of
the neural network is optimized to capture the nuanced rela-
tionships between body postures and their therapeutic effi-
cacy, resulting in a model that is both accurate and reliable.
The trained model is then deployed in a real-time environ-
ment where it receives landmarks data from users perform-
ing yoga poses. This setup allows for immediate analysis and
feedback, crucial for ensuring the correct execution of poses
and maximizing therapeutic benefits. A reference pose for
each of the ten yoga postures is established as a benchmark
for evaluating user performance.

Pose accuracy

To assess the accuracy of a user’s pose, a novel metric has
been used that combines the model’s output probability (p1)
with a similarity index (p2) calculated using the Cosine
Similarity Rule. The Cosine Similarity index (2) compares
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Fig.2 Flowchart diagram for real-time yoga pose training

Adho Mukha Svanasana
(Downward facing dog)

Anjaneyasana (Crescent
Lunge)

v vl
Ardha Matsyendrasana
(Sitting Half-Spinal Twist) _J

Bitilasana (Cow pose)

6 Asana/Pose |

h 4

MediaPipe

selected pose and showing
user their improvement.

Preprocess the Extracted
landmarks into Angles and
Distance between joints.

Adho Mukha Svanasana
(Downward facing dog)

”

i Adho Mukha Svanasana (Downwar
: facing dog)

Anjaneyasana (Crescent Lunge)

- £
© b= erres
a _3 : Ardha Matsyendrasana
1 ER IE = (= = : (Sitting Half-Spinal Twist)
Anjaneyasana (Crescent 0 @ ° E’: 2|0 ~N 2 frrssesssssssssssssnssensansennrnannnnn
Determining Lunge) I B (=] ~l>lo = :
Landmarks wl|l~|~= ~| == :
Ll = ||| =|a || 8] 2
" B MEEHEMEIHER :
{/4 L§ Elo]| ol 2|l 0| of 2| = i
sla2lelelale|lels : Dhanurasana (Bow Pose)
Zlo|lo|lalo| ool a fresessstseetstcennstsnnsssensnssnnnnannsn
ﬁ alo ala 5 : Marjariasana (Cat Pose)
Ardne Matsyendrasa% = 2 Teesssssseniannen
(Sitting Half-Spinal Twist) o0 @ o] Setu Bandha Sarvangasana
. : (Bridge Pose)
(=]

Bitilasana (Cow pose)

Extracted Landmarks |
of 6 Asana/Pose |

l Conversion of Landmarks into Angles and Distances between Joints I

Fig.3 Architecture of proposed SpY_MARNet model

P

Shishuasana/balasana (Child pose;

Prediction

@ Springer



Sport Sciences for Health

the user’s current pose with a reference pose shown to user
represented by the vectors A and B that denotes angles and
distances between different joints using inner product space.

o A-B
1 t,2=<—) 100 =
similarity, p 25"

resilience and focus. By incorporating endurance assess-
ments alongside posture accuracy, a greater understanding
of an individual's yoga practice can be obtained to support

(@)

" A.B.
Xioi AB; % 100

n 2 n 2
\/Zi=1 Aj - \/Zizl B

The similarity index (p2) and model’s output (p1) are then
used to calculate the overall accuracy be doing a weighted
sum, where w1 and w2 are weights assigned to pl and p2
respectively. An equal weight of 0.5 is assigned to both the
model’s prediction (pl) and the similarity index (p2) in the
calculation of overall accuracy (acc) as written in (3) that
ensures a balanced evaluation where each aspect are taken
into importance equally. By including p1, it ensures that both
components are considered equally important in evaluating
the user’s pose. While p2 measures pose accuracy based on
joint angle differences, which is a precise and interpretable
metric, pl represents the model's prediction and captures
additional patterns or relationships that may not be directly
reflected in p2. Including p1 allows the evaluation to benefit
from the model’s learned capabilities, such as understanding
contextual nuances or higher-order correlations in the data.
This combined approach ensures a robust and comprehen-
sive assessment, leveraging the strengths of both compo-
nents. This approach acknowledges the equal importance of
both factors in determining the overall accuracy of the user's
pose. By treating both components equally, the evaluation
process remains robust, transparent, and flexible, allowing
for straightforward adjustments if needed. This simplicity in
weighting also enhances user understanding and ensures a
fair assessment of performance, promoting a comprehensive
evaluation of user poses in the context of yoga practice.

acc = wl % pl + w2 * p2 3)

{wl = w2 = 0.5}

Endurance measurement and user categorization

Endurance plays a very important role in evaluation of a per-
son’s ability to sustain a pose for extended durations while
maintaining the pose correctly. It is the measure of one’s
ability to withstand a pose over long duration. It requires
mental focus along with muscular engagement throughout
the duration of holding the pose, reflecting not only physical
but also mental resilience. Incorporating endurance in our
work provides a valuable insight into the user’s overall fit-
ness along with progress in their yoga journey. The higher
the levels of endurance, the greater the strength, flexibility,
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their overall development and well-being.

This study recognizes that the maximum duration for
holding a yoga pose T,,,, may vary depending on factors
such as pose complexity, individual fitness levels, and per-
sonal preferences. While we utilized a standardized T, of
180 s for our calculations, it is essential to acknowledge that
in practical settings, there may not be a fixed or universally
applicable maximum duration. As such, our endurance met-
ric, derived from the Eq. (4), may occasionally yield values
exceeding 100%. To address this, we have implemented a
practical constraint whereby any calculated endurance per-
centage exceeding 100% is capped at 100%. This approach
ensures that our evaluations remain grounded in practicality
and accurately reflect participants' endurance levels within
the context of their yoga practice, providing meaningful
insights for analysis and interpretation.

Timeduralion -T
T, —T

max

min ) 100 @)

endurance = <
min

if endurance > 100 : endurance = 100

where T ;=0 and T_,, =180 is the minimum and maxi-
mum duration to hold a pose respectively to normalize time
duration on a scale of O to 100%.

Combined metric

This paper’s primary goal is to ensure that users are perform-
ing yoga poses with a high level of accuracy, but it also value
endurance as an important secondary factor. Based on this, it
prioritized accuracy more heavily by assigning it a weight of
W,..=0.7 and gave a lower weight to endurance, W,,4=0.3.
This reflects the importance of achieving the intended form
and alignment in each pose, which is fundamental to reaping
the physical and mental benefits of yoga practice.

While accuracy is the main focus, this model still value
endurance as it reflects the user's ability to hold poses for
extended periods, indicating physical fitness and stamina. By
assigning a weight of 0.3 to endurance as shown in Eq. (5),
to acknowledge its significance as a secondary factor in
overall performance evaluation. The chosen weights strike
a balance between accuracy and endurance, giving greater
emphasis to accuracy while still considering endurance.
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This weighting scheme ensures that both factors contribute
meaningfully to the evaluation, aligning with our goal of
promoting correct pose execution while also recognizing the
importance of physical endurance in yoga practice.

- * *,
presentomyined, . = Wace aCC + Wy endurance 5)

Improvement

This research aimed to quantify the improvement in users’
performance metrics over the period of yoga practice. To
achieve this, a dynamic calculation of improvement is imple-
mented considering various time frames. A calculation is
done as shown in Eq. (6) to compute the average Combined_
Metric values for the last 7 days, the 7 days before that, and
the rest of the days. In instances where data for the last 7 days
or the 7 days before that was unavailable, an adjustment in the
weights proportionally is done to maintain accuracy. Here, na
denotes not applicable denoting that the data is unavailable.

— % 3 %k
prevcombinedmmic =05 avglasl7day> +03 avgla\sﬂdayshcfmc +0.2 avgreleays
- * * i -
PreVeombined, . = 0-6%8V&iagzdays + 0-4%aVE1ag7days, . » 1 AVEresiDays = DA
prevcnmhined,mm = an]asﬂdaym if anrestDays =naand an]ast7clay.<\bﬂ-“re =na

Finally, a computation for the improvement as writ-
ten in Eq. (7) is being done for the user by comparing

presentcombinednmric to the prevcombinedmcmc'

(preSentcombinedme[riC - prevcombinedmemc)

prev,

%100
(N

This approach ensured robustness in assessing users' pro-
gress despite varying data availability, providing valuable
insights into their performance trends for analysis.

improvment =

combined,, .

Real-time pose estimation interface

This research paper introduced a real-time yoga pose rec-
ognition system utilizing pose estimation techniques. The
system is designed to analyze video input, which is pro-
cessed into individual frames for pose estimation. In our
pursuit of enhancing model accuracy, an additional step
has been incorporated into the system's workflow. Spe-
cifically, we predict the pose for six consecutive frames
and subsequently employ a majority voting approach to
determine the final pose prediction. This strategy acknowl-
edges the inherent imperfections within our model, as no
model achieves perfect accuracy. By aggregating predic-
tions across multiple frames and selecting the most com-
monly occurring pose, we aim to mitigate the impact of
occasional inaccuracies, thereby ensuring more robust
and reliable predictions. This measure not only enhances
the system's overall accuracy but also bolsters confidence
in the correctness of the final pose estimation, ultimately
improving the user experience and the system's efficacy in
supporting yoga practice.

Algorithm Pose Precision: Perfecting Your Chosen Asana {Ps}

Input: Real Time Video

Step 1: Feed the pre-recorded video or live video and convert it into N frames.

Step 2: Utilize MediaPie pose landmarker model to extract 33 body landmark locations.

Step 3: Convert those landmark locations to find angles and distances between joints.

Step 4: Use proposed neural network to detect pose for 6 consecutive frames.

Step 5: Take majority of detected pose for 6 frames {Pq4}.

- If {Pq} = {Ps}, then Yoga pose is recognized and the timer starts. Along with-it, lines

connecting the joints changes to green.

- If {Pa} # {Ps}, then Yoga pose is not matched, and the connected lines remains red with a

proper feedback.

- The user adjusts their pose according to the reference pose untill the pose is detected by out

model.

Step 6: After Pose is performed save the Pose Accuracy, Endurance and Combined Metric.

Step 7: Stop the execution.
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SpY_MARNet model extracts 33 landmarks from each
frame captured by the user’s camera. These landmarks
serve as pivotal points in inferring the user’s posture. Sub-
sequently, a conversion of these landmarks into angles and
distances between joints is done, constituting the input
data for the regularized neural network. The model then
predicts the user’s pose based on this input. If the pre-
dicted pose matches the selected yoga pose, the connecting
lines between the landmarks transition to green as shown
in (Figs. 4, 5), signaling correct pose recognition, and ini-
tiating the timer.

Conversely, if a mismatch occurs, indicating incor-
rect pose recognition, the lines remain red, prompting
the user to adjust their posture accordingly. This iterative
process continues until alignment with the selected pose
is achieved. Furthermore, our system provides real-time
feedback (Fig. 6) on pose correctness, aiding users in
refining their yoga practice with precision.

Additionally, the users can track their progress over
time by accessing visualizations such as line and bar charts
(Figs. 7, 8). These visual aids showcase metrics including
endurance, pose accuracy, combined metric, and improve-
ment over consecutive practice sessions. This feature
empowers users to monitor their development and tailor
their practice regimen accordingly, fostering continuous
improvement and mastery of various yoga poses.

Experimental results and analysis

The comparative performance Table 2 illustrates the effi-
cacy of the Proposed SpY_MARNet in relation to a model
utilizing MediaPipe Landmarker features processed through
a Random Forest classifier. As evidenced by the metrics,
SpY_MARNet model exhibits a superior performance across
all evaluated criteria. It achieves an impressive accuracy of

Breathing Practice: Inhale and raise your body upwards while placing both palms near the upper abdomen on the

floor. Exhale once you have expanded the upper body.

Beginner Level

Feedbackj]Correct Posture

Accuracy :98.39
Time Duration : 6.68 seconds

Max-Time Duration : 6.68 seconds

Fig.4 Half-cobra pose recognized by SpY_MARNet model
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Breathing Practice: Inhale and raise your body upwards while placing both palms near the upper abdomen on the
floor. Exhale once you have expanded the upper body.

Beginner Level

Feedback| Correct Posture

Accuracy : 99.36
Time Duration : 16.43 seconds

Max-Time Duration : 16.43 seconds

Fig.5 Cobra pose recognized by SpY_MARNet Model

Feedback: Keep your back straight while lying flat on your stomach for correct posture. | |Feedback: Raise your head to ensure it's above shoulder level for optimal posture.

Accuracy : 48.26 Accuracy : 48.98

Time Duration : 0.64 seconds Time Duration : 0.48 seconds

Max-Time Duration : 9.87 seconds Max-Time Duration : 9.87 seconds

Fig.6 Real-time feedback given when Cobra pose is not performed the correct way
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|

Fig.7 Graphs denoting user’s improvement over the days

99.7%, which is a marginal but noteworthy improvement
over the 98.9% accuracy of the MediaPipe Landmarker
Random Forest model. Precision, a measure of the mod-
el's correctness in identifying a yoga pose as spondylitis-
related, is recorded at 99.6% for SpY_MARNet, indicating
a higher reliability in pose classification compared to the
98.9% precision of the other model. Similarly, recall, which
reflects the model's ability to identify all relevant instances
of the spondylitis-related poses, is at 99.5% for SpY_MAR-
Net. These results collectively underscore the robustness of
SpY_MARNet in classifying spondylitis-related yoga poses
with high precision and recall, demonstrating its potential
as a reliable tool for aiding individuals with spondylitis in
their yoga practice.

In this research, an extensive training and validation of
our model over 1000 epochs is conducted to evaluate its
performance and stability. Throughout this iterative pro-
cess, we meticulously tracked both training and validation

@ Springer

accuracy to understand how well our model generalized to
unseen data. Our analysis revealed intriguing insights, nota-
bly observing a clear trajectory of improvement in accuracy
over epochs. Strikingly, we identified the epoch 615 as piv-
otal (Fig. 9), where the model achieved its peak accuracy.
This convergence at epoch 615 underscores a significant
milestone in our research where we have saved our model,
signifying a delicate balance between model complexity and
generalization capability. The training and validation loss
plot over the epoch is provided in (Fig. 10).

The confusion matrix in Fig. 11 illustrates the perfor-
mance of a machine learning model in classifying yoga
poses from images. The rows represent the ground truth
labels, and the columns represent the predicted labels. The
diagonal elements represent the number of correctly clas-
sified instances for each pose. For instance, the model per-
fectly classified all 147 downward-facing dog (Adho Mukha
Svanasana) poses, and none were misclassified as other
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Combined_Metric X Accuracy X

— Accuracy Combined_Metric — Endurance

Fig.8 Graph depicting the user accuracy, endurance and combined_metric details over a duration

Table 2 Performance metrics of proposed SpY_MARNet model

Model Mediapipe landmarker with Proposed
random forest SpY_MAR-
Net
Accuracy 98.9% 99.7%
Precision 98.9% 99.6%
Recall 98.9% 99.5%

poses. Overall, the model achieved a classification accuracy
of 696 out of 698 poses.

Table 3 presents a comprehensive evaluation of the pro-
posed SpY_MARNet model using a variety of optimiza-
tion algorithms to determine their impact on classification
accuracy. The Adam optimizer, which is the algorithm of

Training Accuracy

epoch_accuracy
tag: epoch_accuracy

l

Training Accuracy
Validation Accuracy

Epoch

Fig.9 Training and validation accuracy v/s epochs graph

choice within the SpY_MARNet framework, demonstrates
superior performance with a maximum accuracy of 99.7%.
This is significantly higher compared to the other optimizers
tested. Stochastic Gradient Descent (SGD) yields a modest
accuracy of 80.9%, while RMSprop exhibits a competitive
performance with an accuracy of 99.14%. Interestingly, the
Adadelta and Adagrad optimizers show considerably lower
accuracies of 9.1% and 32.09% respectively, suggesting they
may not be well-suited to the model or the specificities of
the task at hand. These findings highlight the effectiveness
of the Adam optimizer in the context of our network and
underscore the importance of optimizer selection in the per-
formance of deep learning models.

The proposed model offers users the functionality to
select a specific yoga pose and attempt to replicate it based

Validation Accuracy

e INM'MW'WWW“

_—
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Training Loss — Validation Loss
epoch_loss
tag: epoch_loss
'
2 My N A o , /’}\“\A
| W‘ N Wi
=0 v |
=
Epoch —m—m———  — —

Fig. 10 Training and validation loss v/s epoch’s graph

on a reference image until their pose is accurately recog-
nized by our model. Upon successful recognition of the
posture, an auditory cue signals the commencement of a
timer, initiating concurrent calculations for accuracy and
endurance metrics until the pose is no longer recognized.
All pertinent data, including accuracy measurements and
endurance levels as highlighted in Figs. 12 and 13. For
Bridge Pose and Downward Facing Dog Pose respectively
are meticulously recorded for future reference by the user.
This systematic approach ensures a comprehensive evalu-
ation of the user's performance while engaging in yoga
practice, facilitating informed progress tracking and per-
sonalized refinement of their technique over time.

Conclusion and future work

The proposed SpY_MARNet leverages the power of artifi-
cial intelligence to bring a new dimension to yoga practice,
offering a personalized, accurate, and therapeutically ben-
eficial experience to users. By integrating real-time pose
analysis, accuracy measurement, and endurance tracking,
we aim to contribute significantly to the fields of health,
wellness, and Al-driven personal fitness, particularly for
those managing conditions such as spondylitis. This model
has flexibility for adjustment as these weights are not set

@ Springer

in stone and can be adjusted based on user feedback, pro-
ject objectives, or domain expertise. They provide a start-
ing point for evaluation, and we can iterate and refine our
approach as needed to better reflect the priorities of our tar-
get audience and the goals of our work. Also, the proposed
SpY_MARNet provided an accuracy of 99.7%. The data
collected of user performing various yoga poses, including
accuracy, time taken to complete each pose, and endurance
levels, serves as a valuable resource for further research.
By analyzing the metrics generated by the user during their
yoga journey, researchers can gain deeper insights into the
physiological aspects of yoga practice. It can help to clarify
how accuracy and endurance can together shed light on the
effectiveness of different poses in promoting physical fitness
and mental well-being. Additionally, such data can inform
the development of personalized yoga routines tailored to
individual needs and goals, enhancing the overall effective-
ness and accessibility of yoga practice for spondylitis. By
understanding yoga's benefits more comprehensively, this
information can inform strategies for improving physical
health, mental wellness, and performance. The model has
certain limitation in that it is trained on yoga poses specific
to Spondylitis treatment. This might restrict its applicability
for individuals practicing a broader range of yoga exercises.
For this, an expansion of the dataset is required to include
more diverse poses and conditions to make the model more
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Adho Mukha Svanasana (Downward facing dog)

Anjaneyasana (Crescent Lunge) 0
Ardha Matsyendrasana (Sitting Half-Spinal Twist)
Bhujangasana (Cobra Pose) 0
w
2 Bitilasana (Cow pose) 0
e
g Dhanurasana (Bow Pose)
=
Marjariasana (Cat Pose) 0
Setu Bandha Sarvangasana (Bridge Pose) 0
Shishuasana or balasana (Child pose) 0
Tadasana (Mountain pose) 0

Adho Mukha Svanasana (Downward facing dog)

Fig. 11 Confusion matrix of SpY_MARNet model

Table 3 Performance metrics of proposed SpY_MARNet model
using different optimizers

S. No Optimizer Maximum accuracy
obtained in percentage
1 Adam (used by SpY_ 99.7
MARNet)

2 SGD 80.9

3 RMSprop 99.14

4 Adadelta 90.1

5 Adagrad 32.09
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versatile and train the model better. Another limitation is that
the model focuses on static pose evaluation, which might
not capture the dynamics of yoga poses involving transi-
tions or movements. To capture such poses model needs
to be extended to analyze sequences of poses or transitions
using models like LSTMs or transformers to evaluate the
fluidity and accuracy of movements. This can be a potential
enhancement in future. Future scope can be towards scaling
up the model by training this model to understand more yoga
poses for other health problems and to include the dynamic
pose evaluation as well.
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Intermediate Level &

Fig. 12 TIllustration of correct

bridge pose with endurance bar

__—~Endurance Bar

Feedback: Correct Posture

| Accuracy : 99.69

Time Duration : 31.26 seconds

I Max-Time Duration : 31.26 seconds |

Fig. 13 Tllustration of correct
downward facing dog pose with

Intermediate Level &

/Endurance Bar

endurance range bar

Feedback: Correct Posture

| Accuracy : 99.98

Time Duration : 41.82 seconds

| Max-Time Duration : 41.82 seconds I
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