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This work presents a novel Voice in Head (ViH) framework, that integrates Large Language Models 
(LLMs) and the power of semantic understanding to enhance robotic navigation and interaction within 
complex environments. Our system strategically combines GPT and Gemini powered LLMs as Actor and 
Critic components within a reinforcement learning (RL) loop for continuous learning and adaptation. 
ViH employs a sophisticated semantic search mechanism powered by Azure AI Search, allowing 
users to interact with the system through natural language queries. To ensure safety and address 
potential LLM limitations, the system incorporates a Reinforcement Learning with Human Feedback 
(RLHF) component, triggered only when necessary. This hybrid approach delivers impressive results, 
achieving success rates of up to 94.54%, surpassing established benchmarks. Most importantly, the 
ViH framework offers a modular and scalable architecture. By simply modifying the environment, the 
system demonstrates the potential to adapt to diverse application domains. This research provides a 
significant advancement in the field of cognitive robotics, paving the way for intelligent autonomous 
systems capable of sophisticated reasoning and decision-making in real-world scenarios bringing us 
one step closer to achieving Artificial General Intelligence.
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Advancements in cognitive robotics are reshaping the perception capabilities of intelligent systems, heralding a 
new era in autonomous system design yet the quest to endow robots with human-like cognition and perception 
remains an intimidating challenge1. Despite these significant advancements, replicating the intricate mechanisms 
of human perception and decision-making in robots poses profound theoretical and practical challenges due to 
their data driven nature. The primary focus driving this research to integrate and advance current technologies 
to enhance cognitive and perceptive capabilities in autonomous systems, moving closer to achieving Artificial 
General Intelligence (AGI).

The challenge in cognitive robotics centres on developing systems capable of advanced perception and 
interaction within their environments. The field has evolved from basic task-oriented robots to complex systems 
requiring sophisticated sensory processing and decision-making capabilities. Key research areas in this domain 
include robotic mapping, perception, and interaction, with a focus on integrating semantics to enhance these 
functions2. The integration of AI and robotics has been extensively studied in3,4 providing foundational insights 
into the potential of AGI in robotics. Additionally, the rapid progress in multimedia acquisition technology 
and the introduction5 of AI theory have made visual perception a hot topic in both academic and industrial 
applications, especially in areas like product surface defect detection and intelligent agricultural production6.

This work addresses current limitations in robotic systems to achieve human-like cognition and perception. 
The integration of learning systems, such as deep learning and reinforcement learning, has significantly improved 
visual-based self-state estimation, environment perception, and navigation capabilities in autonomous systems 
(Tang et al., 2022). However, bridging the gap between current technological capabilities and the ambitious goal 
of AGI remains a key challenge. Recent overviews of AGI have highlighted the progress and future challenges 
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in this area, reflecting the ongoing efforts to develop intelligent systems with generalizable capabilities akin to 
human intelligence7.

Generative AI models like ChatGPT8 have catalysed development in AI, showcasing the potential of AI in 
application development and problem-solving, thus contributing to the evolution of cognitive robotics9. The 
exploration of AGI encompasses the development of systems that can perform a wide range of tasks, adapt to 
new environments, and learn from experiences in a manner like humans. This involves not only advancements 
in AI and machine learning but also breakthroughs in understanding and replicating human cognition and 
perception.

The research presented in this work aims to synthesize the current trends and methodologies in cognitive 
robotics, focusing on how the integration of advanced AI systems, machine learning models, and perception 
technologies can enhance cognitive capabilities in robots. By analysing the recent developments and future 
challenges in AGI, the work seeks to provide insights into the potential pathways towards realizing more 
advanced and contextually aware autonomous systems. This introduction sets the stage for a comprehensive 
exploration of the advancements in semantic SLAM, LLMs and RL in the field of robotics10,11, as detailed in the 
subsequent sections of this manuscript. Specifically, the research has the following contributions:

•	 This work proposes a novel actor-critic RL model incorporating two LLMs for enhanced perception.
•	 A point cloud-based mapping system with appropriate triggers for various use cases while handling edge 

cases has been developed.
•	 The proposed actor-critic RL model is integrated with a Proximal Policy Optimization (PPO) algorithm 

which will control the environment mapping.
•	 A seamless query-response pipeline powered by an Object-oriented methodology with semantic search ca-

pabilities has been developed.

The manuscript is further organized such that Section  “Related work” discusses the contemporary works 
followed by Section “Environment setup” discussing the environmental setup for performing this research work. 
Section “Proposed system architecture” discusses the proposed work, Section “Experimental results” provides 
the experimental results followed by Section “Discussion” discussing in detail about the inferences from the 
results. Finally, the conclusion is provided in Section “Conclusion”.

Related work
The integration of semantic SLAM, LLMs and RL is revolutionizing the perception capabilities of intelligent 
systems, particularly in robotics. This literature review focuses on how these technologies collectively contribute 
to the development of advanced robotic systems. Subsequent sections of this literature review detail the 
advancements and interplay of semantic SLAM, LLMs, and RL in the field of robotics. Starting from foundational 
developments in natural language processing with InstructGPT by12 a fine-tuned version of GPT-3, which 
marks a significant advancement in aligning AI with human preferences in NLP tasks13. The model’s improved 
ROUGE-L and Perspective API scores over the 175B GPT-3 model reflect its enhanced accuracy and reliability. 
This foundation is further strengthened by14, who present an environment representation model integrating 
perception and semantics. The model’s unique approach to ontology construction from WordNet glosses is 
a testament to its efficacy. However, the generalizability of these models across diverse real-world scenarios 
remains a gap in research15. extend this by exploring semantic perception in humanoid robots, achieving an 
impressive 85% accuracy in recognizing and executing human activities16. contribute to this theme with LM-
Nav, a system adept at navigating complex environments using pre-trained models, highlighting the practical 
applicability of NLP in robotics.

Transitioning to a more complex domain17 introduce LP-SLAM, a novel SLAM system that leverages LLMs 
for text landmark detection. Achieving an average ATE of 0.05  m on the TUM RGB-D dataset, LP-SLAM 
exemplifies the integration of NLP and SLAM. This integration is further seen in the work of18 who proposed 
object-oriented semantic mapping, achieving an average precision of 0.84 in object detection on the NYUv2 
dataset. However, the application of these technologies in dynamic, real-world environments introduce new 
challenges, such as maintaining accuracy and computational efficiency. Nielsen et al., 2023 feature-based SLAM 
in non-static environments and19 perception-aware planning for active SLAM with MAVs represent significant 
advancements in addressing the dynamic nature of real-world settings20,21. Further this exploration by enhancing 
the adaptability of SLAM systems to environmental changes and integrating visual perception with contextual 
semantics.

The review culminates in an examination of sophisticated applications, where Nvidia (Ma et al., 2023) 
integrate LLMs with RL Eureka, demonstrating its superior performance in 83% of the tasks across 29 RL 
environments. This integration highlights the potential of AI systems in learning complex skills autonomously. 
HELM by22 introduces history compression via language models in Monte Carlo based RL, showing 10 times 
increase in sample efficiency23,24. further advance the SLAM field, with Dynamic-SLAM enhancing localization 
and mapping accuracy in mobile robots, and the integration of semantics and visual information opening new 
frontiers in autonomous systems design. Similarly25, propose a deep learning-based approach integrating LSTM 
and DDPG to mitigate time delays in telepresence robots, achieving a 2.3% improvement in response time and 
enhancing control during communication lapses26. work on semantic mapping on mobile robots underscores 
the growing trend of semantic understanding in robotics. The works carried out by27–29 discuss about robotic 
assistance in application areas such as tele-health and rehabilitation using deep RL.

The impressive capabilities of DeepMind’s Gemini30, as evidenced by its performance against GPT-4 on 
MMLU (90% vs. 86.4%), Big-Bench Hard (83.6% vs. 83.1%), HumanEval (74.4% vs. 67%), and VQAv2 (77.8% 
vs. 77.2%), set a benchmark in AI’s multimodal versatility. Although Gemini does not directly incorporate 
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SLAM, its achievements provide a roadmap for integrating advanced AI systems with SLAM technologies31. 
propose ConceptGraphs, a framework utilizing open-vocabulary 3D scene graphs for robot perception and 
planning. Their approach leverages semantic information from LLMs to encode scene elements and their 
relationships. This enables robots to localize within known environments and map new objects using zero-shot 
detection and segmentation models. Additionally, LLM embeddings allow for text-based queries within the 3D 
scene, facilitating interaction between robots and the environment. While demonstrating strong performance, 
ConceptGraphs does not explicitly explore LLM-based planning over the 3D scene graphs. Furthermore, the 
computational demands of the proposed tech stack may limit its applicability on mobile robots in real-world 
scenarios. A more LLM oriented planning approach is proposed by32 introducing SayPlan, an LLM-based 
framework for robotic task planning in home environments. SayPlan leverages LLMs for semantic search and 
plan generation. It inherits biases and inaccuracies common to LLMs and struggles with distance, count, and 
negation-based reasoning. Additionally, SayPlan assumes a static pre-mapped environment limiting its real-
world adaptability.

The aim of this work is to harness methodologies like those in ConeceptGraphs, SayPlan, Eureka and others 
reviewed herein to build more sophisticated approach for cognitive systems. By combining the strengths of 
multimodal AI and SLAM, the future of robotic perception and autonomy looks promising, with the potential 
to develop systems capable of complex interactions and enhanced decision-making in dynamic environments. 
This integration signifies a pivotal step towards realizing more advanced and contextually aware autonomous 
systems, bringing us one step closer to Artificial General Intelligence.

Environment setup
To emulate real-world conditions and facilitate the operation of autonomous virtual robots, we employed advanced 
physics simulators available in select game engines. These simulators offer high-fidelity 3D environments, crucial 
for testing and validating our proposed framework in various applications and generalized scenarios. Given 
the project’s primary implementation in Python, establishing seamless communication between the Python 
codebase and the virtual robot within the simulation environment while having a control over data that can be 
accessed by the agents is important.

Unreal engine 5.3
Unreal Engine (UE) 5.3 emerged as a prime choice for its robust physics simulation capabilities and unparalleled 
graphical fidelity. Leveraging its cutting-edge features, we were able to create immersive and realistic environments 
that closely resemble real-world scenarios using Unreal Engine, 2024. Despite not directly controlling the 
environment, Unreal Engine provided a versatile platform for designing intricate scenes and scenarios for our 
experiments. We utilized Unreal Engine’s Blueprint system to define complex interactions and events within the 
environment, allowing for dynamic changes and scenarios during simulation runs.

Microsoft airsim plugin
In conjunction with our environment setup, we integrated the Microsoft AirSim plugin33, a sophisticated tool 
tailored for simulating drones and autonomous vehicles. While the Unreal Engine served as the graphical 
rendering engine, the AirSim plugin facilitated the nuanced simulation of vehicles and their interactions 
within the virtual environment as shown in Fig. 1. Offering a standardized interface, the AirSim plugin enabled 
seamless interaction with simulated vehicles, including drones and ground vehicles, within the Unreal Engine 
environment. Furthermore, it provided realistic physics and sensor simulations crucial for evaluating perception 
algorithms.

However, it is pertinent to note that Microsoft has discontinued further development of the AirSim plugin, 
resulting in its deprecation. Despite this, the open-source community, particularly projects such as Colosseum, 
2024, has undertaken the responsibility of maintaining and updating the AirSim plugin. This community-
driven initiative ensures its compatibility with newer versions of the Unreal Engine and sustains support for 
users engaged in simulation-based research and development within the fields of robotics and autonomous 
systems. Although the environmental attributes remained static, the AirSim plugin facilitated dynamic control 
and manipulation of virtual agents (robots) within the simulated environment. Leveraging the AirSim APIs, we 
put together the behaviour and actions of virtual robots, thereby enabling realistic navigation, perception, and 
interaction tasks within the simulated domain.

Computational requirements and scalability
Both Unreal Engine 5.3 and the Microsoft AirSim plugin require high computational power for optimal 
performance. Our simulations were run on a system equipped with an Intel Core i7 processor, 16 GB of 
RAM, an NVIDIA GeForce RTX 3060 graphics card, and an SSD for efficient data access and storage. This 
setup provided the necessary computational resources for smooth rendering of high-fidelity graphics, real-time 
physics simulations, and seamless interaction between the Python codebase and the simulation environment. 
The scalability of Unreal Engine allows for adjustments in graphical fidelity and simulation complexity, ensuring 
broad accessibility across various hardware configurations. The AirSim plugin also supports scalability, allowing 
modifications in vehicle models, sensor configurations, and data fidelity to maintain performance on different 
systems.

Proposed system architecture
Our proposed architecture aims to elevate the cognitive capabilities of autonomous systems by seamlessly 
integrating actor-critic RL, powered by LLMs. This system navigates partially observable environments, utilizing 
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object-oriented semantic properties for context-aware decision-making. Our research focuses on leveraging 
LLMs’ advanced natural language processing (NLP) abilities to enhance existing perception approaches. 
Building upon AirSim’s Python scripts we intend to demonstrate how LLM-driven agents can optimize an 
autonomous system’s understanding of its surroundings. we’ve developed a novel system architecture comprised 
of several interconnected modules, as illustrated in Fig.  2. Each module plays a critical role in enabling the 
system’s intelligent behaviour. We’ll delve deeper into each module and its function in the following subsections.

Fig. 2.  Architecture of the proposed system.

 

Fig. 1.  Blocks environment on UE 5 with Vehicle Client10.
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Point clouds mapping
Our system’s environmental perception begins with the generation of a 3D point cloud. We capture lidar sensor 
data, represented as a set of 3D coordinates: P = {(xi ​,yi​, zi)} for I = 1,2,…,n, where n is the number of points 
in the point cloud. To model the spatial distribution of these points around the agent’s position, we utilize 
a multivariate Gaussian distribution. This allows us to estimate flidar in Eq.  1, where the amplitude (A) and 
standard deviations (σ) of the distribution shape the point cloud’s structure. As visualized in Fig. 3, this phase 
provides the fundamental geometric presentation of the environment, upon which our system’s understanding 
is progressively refined.

	

flidar (x, y, z) =
n∫

i=1

Ai · exp

(
− 1

2

[
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z

])
� (1)

We augment the initial point cloud to achieve denser coverage and incorporate visual information. First, the 
AirSim API’s depth perspective image is decoded and converted it to grayscale. Next, 2D image is reprojected 
into 3D space using a projection matrix as shown in Eq. 2. Combining it with the initial point cloud, results 
in a denser representation called fdense. This denser point cloud retains the geometric accuracy of the lidar 
measurements while incorporating additional detail from the depth image. Finally, we apply a colormap function 
to assign RGB colours to each point based on its corresponding image pixel using Eq. 3, enhancing the visual 
quality of the point cloud (as shown in Fig. 4).
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C(png, xi, yi) =

{ [ri, bi, gi] , xi, yi valid in png
[0, 0, 0], otherwise � (3)

Concurrently AirSim’s object detection module scans each frame for objects of interest. Upon detection, the 
system queries the AI search index to retrieve previous instances of the object. If a match is found and positional 
parameters align, the object is considered redundant, streamlining the robot’s navigation. However, if the object 
is not previously recorded, or its position has significantly changed, the image and its sensory data are sent to 
the ViH model for analysis. To further track changes, we employ Shi-Tomasi corner detection, and the Lucas-
Kanade optical flow algorithm as shown in Fig. 5. These updates are then incorporated into the AI search index. 
Additionally, our system identifies instances where previously detected objects have been removed, ensuring the 

Fig. 3.  A point cloud of objects in front of the agent using LIDAR data.
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Fig. 5.  Object Detection and Tracking: Red dots denoting object detection and green Lines indicating the 
tracking of object’s shift.

 

Fig. 4.  Mapping RGB image using point clouds from LIDAR sensor and depth perception.
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AI search index accurately reflects the dynamic environment. The working of point cloud object tracking and 
mapping is discussed in Algorithm 1.

Voice in head RLHF implementation
We propose the Voice in Head model, a Proximal Policy Optimization (PPO)34 eqw based RLHF Framework 
inspired by the ‘HOLISTIC’ model in neurobiology of language proposed by35. This node acts as a control centre, 
orchestrating the system’s learning process and facilitating training of the agent. It incorporates human feedback 
to guide the AI’s decision-making for unseen cases. The Actor and Critic LLMs are the driving force behind the 
RLHF framework. The Actor LLM leverages visual and sensory input from partially observable environment 
to generate potential actions and inferences in response to the current environmental state and pose queries. 
The Critic LLM provides constructive feedback by evaluating these actions and observation against ground 
truth from the environment and answer Actor’s queries. If the Critic is unsure about the Actor’s responses even 
after continuous feedback, human intervention is triggered to avoid hallucinations. This iterative feedback loop 
ensures continuous improvement and adaptation of the system’s understanding during the training process. The 
working of ViH is shown in Algorithm 2.

Actor
The Actor module serves as the system’s perceptual and decision-making core. It leverages a Large Language 
and Vision Assistant (LLVA) to analyse the environment, generate inferences, and orchestrate actions. We 
explored both GPT-4, 2023 and Google Gemini Advanced30, for their robust natural language understanding 
and function execution capabilities. These models offer complementary strengths across multiple knowledge 
domains. After getting the inferences from vision assistant, Actor can perform functions in Eqs. 4, 5 and 6 as 
shown in Fig. 6 where Prompt 1 contains static instructions about the role of agent and the expected output. 
Prompt 2 contains dynamic instructions which can change after feedback. It is also equipped with GPS data, 
car state, lidar inference and positional arguments about objects in the scene using inbuild functions of Vehicle 
Client in Airsim api.

	
T hrottle =

{ 1, action ̸= 0
0, action = 0 � (4)

	
Brake =

{ 1, action = 0
0, otherwise � (5)

Algorithm 2.  Voice in head.

 

Algorithm 1.  Point cloud object tracking and mapping.
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Steering =





0, action = 1
0.5, action = 2
−0.5, action = 3
0.25, action = 4
−0.25, otherwise

� (6)

Critic
The Critic LLM plays a pivotal role within the ViH framework, serving as a guiding force in the RL process. It 
receives the Actor LLM’s proposed action (A), the current environmental state (S), the Actor’s queries (Q), and 
the chat history (π) as mentioned in Algorithm 2. The Critic’s primary responsibility is to evaluate the quality 
and feasibility of proposed actions, providing the Actor with feedback (F) that directly shapes its decision-
making and behaviour. This iterative feedback loop fosters continuous learning and adaptation throughout the 
training process.

The Critic LLM’s evaluation and subsequent feedback are directly incorporated in the reward function:

	 R (t) = α ∗ LLM_Eval(A, S, Q, π ) + β ∗ OD (S) + γ ∗ R_Base(S, ∆ T )� (7)

Here, LLM_Eval(A, S, Q, π) captures the Critic’s output and the Actor’s refinement, while OD(S) encourages 
actions leading to object discovery. R_Base(S, ΔT) ensures fundamental elements like speed and distance are 
considered. The Critic, through its feedback (F), influences the reward, guiding the Actor toward optimal 
decisions.

In situations of high uncertainty, the Critic can initiate human intervention (HF). Human experts then 
provide additional instructions to guide the Critic and Actor LLMs. Critically, the chat history (π), which acts as 
the system’s policy, is directly the incremental updated (∆π) based on these interactions:

Fig. 6.  Functional flow diagram of the system proposed system.
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	 ∆ π = η ∗ ∇ π Σ tR (t) + log (π )� (8)

Where η which usually is the learning rate but here, it’s the compression rate to keep token usage under limit. 
Compression is done by summarization of previous content based on their cumulative rewards R(t), for time t. 
log(π) represents the latest entry to the chat which is also quantized.

Through these updates, the Critic learns alongside the Actor, leading to increasingly robust decision-making. 
Let’s assume a discount factor δ which controls the importance of future rewards, the cumulative reward at the 
end of an episode is given by:

	 R_F inal = Σ _t δ (t − 1) ∗ R (t)� (9)

Object-Oriented semantics
Object-oriented semantics provides a powerful framework for representing and managing the knowledge 
acquired by autonomous systems during navigation. In this approach, entities within the environment (such 
as vehicles, landmarks, or obstacles) are modelled as objects with associated properties and relationships. This 
structured representation mirrors how humans intuitively perceive and interact with the world, establishing a 
common ground between machine and human understanding. Crucially, object-oriented semantics facilitates 
several key benefits for robotic perception and decision-making. By defining objects and their interrelationships, 
object-oriented semantics allow an autonomous system to reason about the broader context in which it operates, 
rather than just reacting to isolated data points. The structured nature of this approach promotes efficient 
storage, retrieval, and updating of information within a knowledge base, enabling the system to learn from past 
experiences and adapt its behaviour. Furthermore, the ability to reason about objects with defined properties can 
significantly reduce time complexity in navigation tasks, as the system can make more informed decisions based 
on its structured understanding of the environment.

Azure AI search
We leverage Azure AI Search as a centralized knowledge repository to manage the object-oriented semantic 
data acquired throughout navigation. Within this repository, we store diverse data elements crucial for 
decision-making, including raw visual input from the vehicle’s cameras, calculated rewards reflecting episodic 
performance, positional arguments related to both the vehicle and detected objects, and supplementary sensory 
data. Importantly, we structure the information within AI Search around episodes, where each episode serves 
as a complete navigation cycle. This organization enables the system to retrieve and reason about contextual 
information during learning and task execution.

Language transformation
To ensure the data stored within Azure AI Search is enriched with contextual understanding, we employ a 
dedicated Language Transformation LLM. This LLM’s primary responsibility is to analyse the entirety of the 
episodic conversations, which include the interactions between the Actor and Critic LLMs, as well as any human 
intervention instances. The LLM extracts salient semantic elements, encompassing object descriptions, actions 
performed, and overall episode goals. Subsequently, this information is transformed into structured JSON 
properties. These properties are then integrated alongside images, rewards, and sensory data within Azure AI 
Search, adding a layer of contextual depth to the stored information.

AI search query with LLM frontend
For user-friendly interaction with the accumulated semantic data, we implement a synergistic combination 
of Azure AI Search’s query mapping capabilities and a front-end LLM. AI Search excels at translating natural 
language user queries into structured search requests. The LLM frontend functions as an intelligent user 
interface, equipped with Natural Language Processing (NLP) capabilities to decipher the intent behind user 
queries. It collaborates with the query mapper by mapping the user’s query to pre-defined functions within 
the AI Search API. These targeted searches within the knowledge base facilitate efficient retrieval of the most 
relevant information in response to the user’s natural language query.

Experimental results
To comprehensively assess the capabilities of our proposed system, we designed a series of controlled experiments 
within simulated environment. This simulation setting offers the advantages of precise environmental control, 
the ability to test a vast array of scenarios, and safe, risk-free experimentation that is crucial for autonomous 
systems. We designed a tiered experimental setup to progressively test the system in environments of increasing 
complexity. As illustrated in Fig.  7, we employed three distinct environments: the “Blocks” environment 
enhanced with strategic asset additions for simpler complexity, Unreal Engine’s sample modern house project 
replicating a cluttered indoor setting for moderate complexity, and finally, the “Downtown West” environment 
simulating a dynamic outdoor urban landscape.

Object tracking
Our evaluation for this section focuses on the effectiveness of triggering the ViH model pipeline during 
navigation and mapping. We assess this by examining “Hits” and “Misses” in triggering the pipeline for each 
individual instance. A “Hit” signifies a successful triggering when the system correctly identified the need to 
activate the ViH model. Conversely, a “Miss” indicates that the system failed to trigger the ViH model when 
it was necessary. It’s important to note that we are primarily concerned with the overall triggering success 
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rate, rather than dissecting the specific causes of misses (whether due to object tracking or semantic search or 
object detection failures). This is because isolating these individual factors falls outside the scope of our current 
research. The number of Hits account to the number of episodes an agent will go through to analyse the whole 
map.

Table 1 summarizes the number of trigger instances across the three environments:
A hit accuracy of 92.178%, 89.885% and 82.755 for easy, medium, and hard levels respectively. Here total 

trigger instances are determined by the number of unique objects spread across the environment. These values 
are determined using ground truth from the environment.

Navigation
To comprehensively assess the navigation capabilities of our proposed model, we conducted a comparative 
evaluation against AirSim’s built-in Deep Q-Network (DQN) script and the Proximal Policy Optimization 
(PPO) algorithm. Both baseline models were configured to operate with the same trigger conditions as our ViH 
model, powered by GPT-4 and Gemini Pro (tested separately). We consider each trigger instance equivalent 
to a RL episode. To account for variations in internet connectivity and server response times, we focused on 
recording the internal processing time of each model for an episode, excluding the time spent on API requests. 
It’s worth noting that ViH-GPT utilizes GPT-V for initial vision analysis before sending results to GPT-4, while 
ViH-Gemini employs a single Gemini Pro model for combined vision and semantic understanding.

For all three difficulty environments, we tracked internal processing time per episode along with episode 
outcomes indicating success or failure (Figs. 8, 9 and 10). Within these figures, grey dots represent failed episodes, 
while red dots signify episodes terminated due to collisions. Additionally, we monitored timesteps throughout 
the training process. Each timestep corresponds to a single action taken within an episode, providing a granular 
measure of performance. Finally, rounded off cumulative rewards (calculated using Eq. 9 with a discount factor, 
δ = 0.2) acquired over training for all models in each environment are presented in Fig. 11. Here, the episodes 
having successful execution were observed to receive a reward around + 1 while the rest received a reward 
around 0. Episodes undergoing collision received a reward around − 1.

Table 2 presents a detailed comparison between the four navigation models across all three environments. 
The following four key metrics form the basis of our evaluation:

•	 Success Rate (%): The percentage of episodes where the navigation agent successfully reached the designated 
goal within a predefined time limit.

•	 Collision Rate (%): The frequency of collisions with obstacles during navigation, expressed as a percentage of 
the total episodes for that level.

•	 Total Timesteps: The cumulative number of atomic actions taken by an RL agent during navigation. This gran-
ular measurement reflects the overall execution time of all episodes for a given environment.

•	 Final Reward: The summation of all cumulative rewards, offering insights into the ability of a model to learn 
and optimize decisions over time.

Semantic query comprehension and management
This section explores how our system interprets and manages natural language queries, both internally generated 
and those provided by users. We analyse the average number of tokens employed by the LLMs, particularly 
GPT-4 and Gemini Pro, during training episodes and when responding to user queries. Critically, we examine 
how effectively the LLMs’ chat histories are summarized when reaching their respective token limits. This 

Environment Total trigger instances Hits Misses

Easy 179 165 14

Medium 524 471 53

Hard 1067 883 184

Table 1.  Triggering summary during mapping.

 

Fig. 7.  Unreal engine simulation environments used during experimenting10,11.
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Fig. 9.  Time taken per episode with failures and collisions that took place for “Medium” level.

 

Fig. 8.  Time taken per episode with failures and collisions that took place for “Easy” level.
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Level Metrics ViH-GPT ViH-Gemini PPO DQN

Easy

Success Rate
(%) 94.54 93.33 75.15 0.00

Collision Rate (%) 0.00 0.00 3.63 79.39

Total 
Timesteps 2,689 2,709 3,000 3,014

Final Reward 156 154 118 − 131

Medium

Success Rate
(%) 92.14 90.66 70.06 0.00

Collision Rate (%) 2.55 2.76 6.58 76.86

Total Timesteps (seconds) 7,428 7,546 8,683 8776

Final Reward 422 414 299 − 362

Hard

Success Rate
(%) 78.93 83.57 65.91 0.00

Collision Rate (%) 7.13 4.64 12.23 89.92

Total Timesteps (seconds) 14,836 14,754 16,147 14,517

Final Reward 634 697 474 -794

Table 2.  Comparison of ViH model with traditional models for navigation through the environment.

 

Fig. 11.  Cumulative rewards per episode for all the models in all 3 environments.

 

Fig. 10.  Time taken per episode with failures and collisions that took place for “Hard” level.
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summarization technique is essential for maintaining a manageable history size within the ViH system. Table 3 
presents a comparative analysis, detailing the average token usage and the associated compression percentages 
achieved for GPT-4 and Gemini Pro for different query types. Since GPT-V’s chat history is refreshed with every 
usage, eliminating the need for compression.

Following extensive training, we evaluated the performance of both ViH-GPT and ViH-Gemini models in 
accurately interpreting and responding to diverse user queries. This evaluation focused solely on the overall 
system’s ability to handle queries, independent of the specific environments the models were trained in. Table 4 
summarizes the percentage of correct responses for retrieval and actionable queries, further categorized by 
complexity as follows:

•	 Simple Retrieval Queries (Total Queries: 80):

•	 “Where is the nearest ufoods?”
•	 “Is there a tree near you?”
•	 “What is the colour of table in living room?”
•	 Example – Where is the nearest ufoods?

Function Call - triggerAzureAISearch(“nearest ufoods”).
Response (ViH-GPT) - “The nearest ufoods is at coordinates (28.7041, 77.1025), approximately 2.5 kilo-
meters north. Proceed along Main Street and turn left at the second intersection.”
Response (ViH-Gemini) - “You can find the nearest ufoods at coordinates (28.7041, 77.1025), 2.5 kilom-
eters away. Head north for about 2 kilometers, then take a left turn at Baker’s Lane.”

•	 Complex Retrieval Queries (Total Queries: 40)

•	 “Find me a quiet place to sit.”
•	 “Recommend a restaurant serving Italian cuisine with good vegetarian options nearby.”
•	 “Suggest me something to wear based on the weather?”
•	 Example – Recommend a restaurant serving Italian cuisine with good veg options nearby.

Function Call - triggerAzureAISearch(“restaurant serving Italian cuisine with good vegetarian options 
nearby”).
Response (ViH-GPT) - “I recommend ‘La Bella Italia,’ located at coordinates (148.362, 8.023), known for 
its excellent vegetarian pasta and pizza. It is 1.2 kilometers west, right after the city park.”
Response (ViH-Gemini) - “Try ‘La Bella Italia,’ at coordinates (148.362, 8.023), which has great Italian 
vegetarian dishes. It’s 1.2 kilometers west of your location, just past the central library.”

•	 Image-Based Retrieval Queries (Total Queries: 20):

•	 User uploads an image of a specific object. “Where is this object?”
•	 User uploads an image of a room. “Was there any book in this room?”
•	 User uploads an image of an award. “Was this award on the table?”
•	 Example – Where is this object?

Function Call - triggerImageSearch(img.jpg, query ).
Response (ViH-GPT) - “This object is on the second shelf of the bookcase in the living room at coordi-
nates (8.232, 65.420). Look next to the blue photo frame.”

Model

Retrieval Queries (%) Actionable Queries (%)

Simple Complex Image Simple Complex Image

ViH-GPT 95.00 85.00 85.00 97.50 80.00 90.00

ViH-Gemini 95.00 82.50 80.00 95.00 70.00 80.00

Table 4.  Response analysis for all queries.

 

LLM Max Tokens

Average Token Usage Compression
(%)Training Episode User Query

GPT – 4 32,768 4,532 1,586 86.2

GPT – V 128,000 87,294 56,243 –

Gemini 
Pro 30,720 2,976 1,872 90.04

Table 3.  Average tokens used by LLMs per training episode and user query vs. compression percentage after 
reaching token limit.

 

Scientific Reports |         (2025) 15:7237 13| https://doi.org/10.1038/s41598-025-92252-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Response (ViH-Gemini) - “The object is on the second shelf of the bookcase in the living room at coor-
dinates (8.232, 65.420). It’s next to the green vase.”

•	 Simple Actionable Queries (Total Queries: 40):

•	 “Go to living room.”
•	 “Go near the tree.”
•	 Example – Go to living room.

Function Call - triggerAzureAISearch(“living room location”).
Action - gotoCoordinates(10.021, 60.204).

•	 Complex Actionable Queries (Total Queries: 20):

•	 “Goto any animal statue but take a longer route.”
•	 “I want to wash my hand, lead me to it.”
•	 Example – I want to wash my hand, lead me to it.

Function Call - triggerAzureAISearch(“nearest washroom location”).
Action - gotoCoordinates(15.852, 69.481).

•	 Image-Based Actionable Queries (Total Queries: 10):

•	 User uploads an image of a cluttered desk. “Goto this workspace.”
•	 User uploads an image of a light fixture. “Go to the switch that will turn this light off.”
•	 Example – Go to the switch that will turn this light off.

Function Call - triggerImageSearch(img.jpg, query).
Action - gotoCoordinates(7.119, 64.696).

For retrieval queries, responses focused on the use of semantic search (LLM function calls combined with Azure 
AI Search). Actionable queries required the system to both retrieve information and perform actions to fulfill the 
request. To assess the accuracy of the models’ responses, results for ViH-GPT and ViH-Gemini were compared 
against a manually verified ground truth.

Human feedback component
This component plays a critical role in refining the model’s responses. Human interventions are triggered in 
instances where the system’s confidence in its response is low or when the provided response is identified as 
potentially incorrect. The nature and frequency of these interventions are illustrated in Fig. 12, which compares 
the instances of human feedback required for different query types by ViH-GPT and ViH-Gemini.

In our analysis, we found that ViH-GPT required more human feedback compared to ViH-Gemini. 
Specifically, ViH-GPT called for human feedback approximately 33% more frequently across various query 
types. This difference highlights ViH-GPT’s greater reliance on human intervention to ensure response accuracy, 

Fig. 12.  Number of times Human feedback was triggered for different types of queries by ViH-GPT.
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particularly in complex and image-based queries. For instance, ViH-GPT needed more feedback for complex 
retrieval and actionable queries, indicating challenges in these areas.

Discussion
In this section, we delve deeper into the experimental results presented earlier and explore the implications 
for our ViH system. We analyse the performance trends between ViH-GPT and ViH-Gemini, focusing on 
their efficiency in query handling, responsiveness to user requests, and adaptability when facing challenging 
queries. Additionally, we examine the limitations revealed during the evaluation, providing insights for future 
refinements and potential avenues for enhancing the system’s autonomous capabilities.

Object tracking
The tiered approach adopted for evaluating object tracking proved valuable in assessing the system’s ability 
to learn and adapt its navigation strategies across environments with varying difficulty levels. This evaluation 
provided comprehensive performance benchmarks, highlighting the system’s strengths and areas for potential 
improvement under real-world complexities. Notably, the modular design of the approach facilitates replication 
for future research endeavors.

The results for triggering the ViH model pipeline during navigation and mapping are promising. The achieved 
hit accuracy indicates a high success rate in correctly identifying situations that necessitate ViH model activation 
(ranging from 92.178% in easy environments to 82.755% in hard environments). It’s important to remember 
that these “misses” where the system failed to trigger the pipeline do not encompass the specific reasons for the 
failures, such as limitations in object tracking, semantic search, or object detection. A deeper dive into these 
potential causes might be a consideration for future investigations.

Navigation
The comparative evaluation reveals prominent differences in the navigation capabilities of the tested RL models: 
ViH-GPT, ViH-Gemini, Simple PPO, and AirSim DQN. Our proposed ViH models consistently outperform 
both baseline models (PPO and DQN) across all difficulty levels in terms of success rate, collision rate, and 
cumulative reward. This highlights the advantages of incorporating LLMs for both the Actor and Critic roles 
within the RL framework, as they appear to offer significant improvements in decision-making and navigation 
compared to more traditional RL models. Furthermore, the ViH models demonstrate a remarkable ability 
to navigate complex environments while minimizing collision rates. This suggests a superior understanding 
of spatial relationships and the ability to avoid obstacles effectively, potentially enabled by the rich semantic 
information the LLMs incorporate into their decision-making processes.

It was observed that DQN failed all the tests with huge collision rates given the model was equipped with 
no semantic understanding and decision-making working on randomized concepts which weren’t suitable for 
the given episode frames. The PPO implementation had more information about the sensory data to perform 
more informed decisions The observed dominance of ViH-GPT in easy and medium environments suggests 
that separating vision processing (with GPT-V) and language understanding (with GPT-4) offers advantages in 
less complex settings. This modularity might enable faster decision-making and a more efficient use of language 
modelling capabilities. Whereas ViH-Gemini outperformed the other models in the hard environment. This 
indicates that combining vision and language processing within a single LLM can be particularly beneficial when 
navigating highly intricate surroundings, where understanding spatial context and visual cues is important. 
When analysing these metrics, it’s crucial to consider them as an interconnected system. A high success rate 
coupled with a low collision rate indicates that the model navigates effectively. Total timesteps should be analysed 
in the context of reward – a lower number of timesteps combined with high final reward implies efficiency in the 
model’s navigation strategy.

It was also observed that episodes terminated faster when a collision occurred and took more time when a 
failure occurred without any collision due to stalling in Figs. 8, 9 and 10. Further it can be observed in Fig. 11 
that due to the approximation in result values to keep it simpler for LLM’s understanding, the cumulative reward 
vs. episode graph shows a close to linear representation for all the models, where the larger is the positive slope 
the more efficient is the model. DQN showed a negative slope in all the scenarios.

Semantic query comprehension and management
Our analysis of LLM token usage from Table 3 reveals significant differences between GPT-4 and Gemini Pro. 
These differences highlight how each LLM processes and manages information. GPT-4, had a larger token 
allowance and utilized more tokens during training episodes on an average which could be due to it getting 
inferences from GPT-V separately which in case Gemini Pro is integrated within one mode as this opposite in 
the case of average token usage to process user queries. Its higher compression percentage suggests an ability 
to generate concise responses. Gemini Pro offered a higher compression ratio of 90.04% which means that 
whenever it reached its token limit it summarized the chat history to 9.96% of its original size. GPT-V, on the 
other hand, consistently uses a substantially greater proportion of its available tokens. While these differences in 
token usage patterns might lead to variations in response generation style (e.g., verbosity, conciseness), further 
investigation is needed to correlate these patterns with specific qualitative aspects of the models’ responses.

The ViH system, particularly in the ViH-GPT configuration, demonstrates high accuracy in handling both 
retrieval and actionable queries (Table 4). Across query complexity levels (simple, complex, and image-based), 
the system consistently maintains a reliable level of performance. This robustness showcases the power of LLMs 
to understand natural language instructions and effectively combine semantic search with the ability to initiate 
actions within the environment. It’s worth noting that, in certain cases, image-based queries might have achieved 
greater accuracy due to the potential effectiveness of Azure AI Search in handling visual search tasks.
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The ViH system demonstrates impressive capabilities in understanding and responding to various user 
queries. However, the analysis of instances where human intervention was needed reveals a key focus area 
for improvement. By understanding the specific circumstances triggering human feedback, we can pinpoint 
potential shortcomings in the LLMs’ semantic understanding or reasoning processes. Importantly, our approach, 
incorporating LLMs alongside a human feedback mechanism, has demonstrably reduced the frequency and 
impact of LLM hallucinations.

Conclusion
The development of the ViH system offers compelling insights into the intersection of robotics, LLMs, and the 
pursuit of artificial general intelligence (AGI). This research highlights the transformative potential of LLMs 
when strategically integrated into autonomous robotic systems. By empowering a robot to understand natural 
language instructions, leverage semantic search, and initiate contextually relevant actions, we take a significant 
step towards systems that operate more flexibly and intuitively within real-world environments. Our exploration 
underscores the intricate relationship between language understanding, semantic representation, and embodied 
action. The ViH framework’s success in grounding language commands within a physical environment suggests 
that semantic grounding, rather than solely relying on massive language datasets, could play a pivotal role in 
developing more robust AGI systems. Furthermore, the demonstrated advantages of modularity, as seen with 
the separation of visual processing and language modeling in ViH-GPT, call for a careful consideration of 
architectural design choices in intelligent systems.

Crucially, our experimental findings illustrate the continued value of human feedback in refining and 
guiding LLM-based systems. While LLMs exhibit remarkable capabilities, their tendency towards hallucination 
necessitates careful oversight. The integration of RLHF within the ViH system offers a promising avenue for 
mitigating these challenges. This approach highlights the potential for hybrid systems, those that leverage both 
the strengths of powerful LLMs and the nuanced understanding of human input, in the pursuit of AGI. As 
we forge ahead, it is vital to acknowledge the limitations of purely data-driven approaches. While LLMs excel 
at pattern recognition and language generation, they often struggle with complex reasoning, common-sense 
understanding, and generalization to novel scenarios. This work suggests that future advancements in AGI 
might necessitate a deeper exploration of knowledge representation, symbolic reasoning, and the integration 
of diverse cognitive abilities. The ViH system represents a significant contribution to the fields of robotics and 
intelligent system design. This research paves the way for further exploration into the role of LLMs, semantic 
grounding, modular architectures, and the nuanced interplay between human guidance and AI capabilities as we 
strive for increasingly intelligent and adaptable robotic systems. This work opens up several promising avenues 
for future research which include conducting in-depth profiling of GPT-4 and Gemini Pro, examining factors 
such as response length, accuracy, and processing efficiency, would provide a deeper understanding of their 
respective strengths and weaknesses for different query types. Also, the work can focus more on targeted data 
augmentation by expanding the training datasets with complex queries and scenarios where hallucinations may 
occur could improve the models’ robustness and reduce the need for human intervention. Another futuristic 
scope will be towards developing intelligent techniques for identifying when human feedback is truly necessary, 
as well as exploring alternative reward functions within the RLHF framework, could further optimize the 
human-AI collaboration within the ViH system.
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