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OPEN A novel voice in head actor critic

reinforcement learning with human
feedback framework for enhanced
robot navigation

Alabhya Sharma?, Ananthakrishnan Balasundaram?*“, Ayesha Shaik? &
Chockalingam Aravind Vaithilingam?

This work presents a novel Voice in Head (ViH) framework, that integrates Large Language Models
(LLMs) and the power of semantic understanding to enhance robotic navigation and interaction within
complex environments. Our system strategically combines GPT and Gemini powered LLMs as Actor and
Critic components within a reinforcement learning (RL) loop for continuous learning and adaptation.
ViH employs a sophisticated semantic search mechanism powered by Azure Al Search, allowing

users to interact with the system through natural language queries. To ensure safety and address
potential LLM limitations, the system incorporates a Reinforcement Learning with Human Feedback
(RLHF) component, triggered only when necessary. This hybrid approach delivers impressive results,
achieving success rates of up to 94.54%, surpassing established benchmarks. Most importantly, the
ViH framework offers a modular and scalable architecture. By simply modifying the environment, the
system demonstrates the potential to adapt to diverse application domains. This research provides a
significant advancement in the field of cognitive robotics, paving the way for intelligent autonomous
systems capable of sophisticated reasoning and decision-making in real-world scenarios bringing us
one step closer to achieving Artificial General Intelligence.

Keywords Navigation and mapping, Large Language models, Reinforcement learning, Artificial general
intelligence, Robotics

Advancements in cognitive robotics are reshaping the perception capabilities of intelligent systems, heralding a
new era in autonomous system design yet the quest to endow robots with human-like cognition and perception
remains an intimidating challenge'. Despite these significant advancements, replicating the intricate mechanisms
of human perception and decision-making in robots poses profound theoretical and practical challenges due to
their data driven nature. The primary focus driving this research to integrate and advance current technologies
to enhance cognitive and perceptive capabilities in autonomous systems, moving closer to achieving Artificial
General Intelligence (AGI).

The challenge in cognitive robotics centres on developing systems capable of advanced perception and
interaction within their environments. The field has evolved from basic task-oriented robots to complex systems
requiring sophisticated sensory processing and decision-making capabilities. Key research areas in this domain
include robotic mapping, perception, and interaction, with a focus on integrating semantics to enhance these
functions®. The integration of Al and robotics has been extensively studied in** providing foundational insights
into the potential of AGI in robotics. Additionally, the rapid progress in multimedia acquisition technology
and the introduction® of AI theory have made visual perception a hot topic in both academic and industrial
applications, especially in areas like product surface defect detection and intelligent agricultural production®.

This work addresses current limitations in robotic systems to achieve human-like cognition and perception.
The integration of learning systems, such as deep learning and reinforcement learning, has significantly improved
visual-based self-state estimation, environment perception, and navigation capabilities in autonomous systems
(Tang et al., 2022). However, bridging the gap between current technological capabilities and the ambitious goal
of AGI remains a key challenge. Recent overviews of AGI have highlighted the progress and future challenges
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in this area, reflecting the ongoing efforts to develop intelligent systems with generalizable capabilities akin to
human intelligence’.

Generative Al models like ChatGPT® have catalysed development in Al, showcasing the potential of Al in
application development and problem-solving, thus contributing to the evolution of cognitive robotics’. The
exploration of AGI encompasses the development of systems that can perform a wide range of tasks, adapt to
new environments, and learn from experiences in a manner like humans. This involves not only advancements
in AI and machine learning but also breakthroughs in understanding and replicating human cognition and
perception.

The research presented in this work aims to synthesize the current trends and methodologies in cognitive
robotics, focusing on how the integration of advanced Al systems, machine learning models, and perception
technologies can enhance cognitive capabilities in robots. By analysing the recent developments and future
challenges in AGI, the work seeks to provide insights into the potential pathways towards realizing more
advanced and contextually aware autonomous systems. This introduction sets the stage for a comprehensive
exploration of the advancements in semantic SLAM, LLMs and RL in the field of robotics'®!!, as detailed in the
subsequent sections of this manuscript. Specifically, the research has the following contributions:

o This work proposes a novel actor-critic RL model incorporating two LLMs for enhanced perception.

« A point cloud-based mapping system with appropriate triggers for various use cases while handling edge
cases has been developed.

« The proposed actor-critic RL model is integrated with a Proximal Policy Optimization (PPO) algorithm
which will control the environment mapping.

o A seamless query-response pipeline powered by an Object-oriented methodology with semantic search ca-
pabilities has been developed.

The manuscript is further organized such that Section “Related work” discusses the contemporary works
followed by Section “Environment setup” discussing the environmental setup for performing this research work.
Section “Proposed system architecture” discusses the proposed work, Section “Experimental results” provides
the experimental results followed by Section “Discussion” discussing in detail about the inferences from the
results. Finally, the conclusion is provided in Section “Conclusion’.

Related work

The integration of semantic SLAM, LLMs and RL is revolutionizing the perception capabilities of intelligent
systems, particularly in robotics. This literature review focuses on how these technologies collectively contribute
to the development of advanced robotic systems. Subsequent sections of this literature review detail the
advancements and interplay of semantic SLAM, LLMs, and RL in the field of robotics. Starting from foundational
developments in natural language processing with InstructGPT by!? a fine-tuned version of GPT-3, which
marks a significant advancement in aligning Al with human preferences in NLP tasks!®. The model’s improved
ROUGE-L and Perspective API scores over the 175B GPT-3 model reflect its enhanced accuracy and reliability.
This foundation is further strengthened by'%, who present an environment representation model integrating
perception and semantics. The model’s unique approach to ontology construction from WordNet glosses is
a testament to its efficacy. However, the generalizability of these models across diverse real-world scenarios
remains a gap in research'®. extend this by exploring semantic perception in humanoid robots, achieving an
impressive 85% accuracy in recognizing and executing human activities'®. contribute to this theme with LM-
Nay, a system adept at navigating complex environments using pre-trained models, highlighting the practical
applicability of NLP in robotics.

Transitioning to a more complex domain!” introduce LP-SLAM, a novel SLAM system that leverages LLMs
for text landmark detection. Achieving an average ATE of 0.05 m on the TUM RGB-D dataset, LP-SLAM
exemplifies the integration of NLP and SLAM. This integration is further seen in the work of!® who proposed
object-oriented semantic mapping, achieving an average precision of 0.84 in object detection on the NYUv2
dataset. However, the application of these technologies in dynamic, real-world environments introduce new
challenges, such as maintaining accuracy and computational efficiency. Nielsen et al., 2023 feature-based SLAM
in non-static environments and!® perception-aware planning for active SLAM with MAVs represent significant
advancements in addressing the dynamic nature of real-world settings?>*!. Further this exploration by enhancing
the adaptability of SLAM systems to environmental changes and integrating visual perception with contextual
semantics.

The review culminates in an examination of sophisticated applications, where Nvidia (Ma et al., 2023)
integrate LLMs with RL Eureka, demonstrating its superior performance in 83% of the tasks across 29 RL
environments. This integration highlights the potential of AI systems in learning complex skills autonomously.
HELM by?? introduces history compression via language models in Monte Carlo based RL, showing 10 times
increase in sample efficiency?>?*. further advance the SLAM field, with Dynamic-SLAM enhancing localization
and mapping accuracy in mobile robots, and the integration of semantics and visual information opening new
frontiers in autonomous systems design. Similarly?, propose a deep learning-based approach integrating LSTM
and DDPG to mitigate time delays in telepresence robots, achieving a 2.3% improvement in response time and
enhancing control during communication lapses®®. work on semantic mapping on mobile robots underscores
the growing trend of semantic understanding in robotics. The works carried out by?’~? discuss about robotic
assistance in application areas such as tele-health and rehabilitation using deep RL.

The impressive capabilities of DeepMind’s Gemini®’, as evidenced by its performance against GPT-4 on
MMLU (90% vs. 86.4%), Big-Bench Hard (83.6% vs. 83.1%), HumanEval (74.4% vs. 67%), and VQAv2 (77.8%
vs. 77.2%), set a benchmark in AT’s multimodal versatility. Although Gemini does not directly incorporate
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SLAM, its achievements provide a roadmap for integrating advanced Al systems with SLAM technologies®!.
propose ConceptGraphs, a framework utilizing open-vocabulary 3D scene graphs for robot perception and
planning. Their approach leverages semantic information from LLMs to encode scene elements and their
relationships. This enables robots to localize within known environments and map new objects using zero-shot
detection and segmentation models. Additionally, LLM embeddings allow for text-based queries within the 3D
scene, facilitating interaction between robots and the environment. While demonstrating strong performance,
ConceptGraphs does not explicitly explore LLM-based planning over the 3D scene graphs. Furthermore, the
computational demands of the proposed tech stack may limit its applicability on mobile robots in real-world
scenarios. A more LLM oriented planning approach is proposed by*? introducing SayPlan, an LLM-based
framework for robotic task planning in home environments. SayPlan leverages LLMs for semantic search and
plan generation. It inherits biases and inaccuracies common to LLMs and struggles with distance, count, and
negation-based reasoning. Additionally, SayPlan assumes a static pre-mapped environment limiting its real-
world adaptability.

The aim of this work is to harness methodologies like those in ConeceptGraphs, SayPlan, Eureka and others
reviewed herein to build more sophisticated approach for cognitive systems. By combining the strengths of
multimodal AI and SLAM, the future of robotic perception and autonomy looks promising, with the potential
to develop systems capable of complex interactions and enhanced decision-making in dynamic environments.
This integration signifies a pivotal step towards realizing more advanced and contextually aware autonomous
systems, bringing us one step closer to Artificial General Intelligence.

Environment setup

To emulate real-world conditions and facilitate the operation of autonomous virtual robots, we employed advanced
physics simulators available in select game engines. These simulators offer high-fidelity 3D environments, crucial
for testing and validating our proposed framework in various applications and generalized scenarios. Given
the project’s primary implementation in Python, establishing seamless communication between the Python
codebase and the virtual robot within the simulation environment while having a control over data that can be
accessed by the agents is important.

Unreal engine 5.3

Unreal Engine (UE) 5.3 emerged as a prime choice for its robust physics simulation capabilities and unparalleled
graphical fidelity. Leveraging its cutting-edge features, we were able to create immersive and realistic environments
that closely resemble real-world scenarios using Unreal Engine, 2024. Despite not directly controlling the
environment, Unreal Engine provided a versatile platform for designing intricate scenes and scenarios for our
experiments. We utilized Unreal Engine’s Blueprint system to define complex interactions and events within the
environment, allowing for dynamic changes and scenarios during simulation runs.

Microsoft airsim plugin

In conjunction with our environment setup, we integrated the Microsoft AirSim plugin’?, a sophisticated tool
tailored for simulating drones and autonomous vehicles. While the Unreal Engine served as the graphical
rendering engine, the AirSim plugin facilitated the nuanced simulation of vehicles and their interactions
within the virtual environment as shown in Fig. 1. Offering a standardized interface, the AirSim plugin enabled
seamless interaction with simulated vehicles, including drones and ground vehicles, within the Unreal Engine
environment. Furthermore, it provided realistic physics and sensor simulations crucial for evaluating perception
algorithms.

However, it is pertinent to note that Microsoft has discontinued further development of the AirSim plugin,
resulting in its deprecation. Despite this, the open-source community, particularly projects such as Colosseum,
2024, has undertaken the responsibility of maintaining and updating the AirSim plugin. This community-
driven initiative ensures its compatibility with newer versions of the Unreal Engine and sustains support for
users engaged in simulation-based research and development within the fields of robotics and autonomous
systems. Although the environmental attributes remained static, the AirSim plugin facilitated dynamic control
and manipulation of virtual agents (robots) within the simulated environment. Leveraging the AirSim APIs, we
put together the behaviour and actions of virtual robots, thereby enabling realistic navigation, perception, and
interaction tasks within the simulated domain.

Computational requirements and scalability

Both Unreal Engine 5.3 and the Microsoft AirSim plugin require high computational power for optimal
performance. Our simulations were run on a system equipped with an Intel Core i7 processor, 16 GB of
RAM, an NVIDIA GeForce RTX 3060 graphics card, and an SSD for efficient data access and storage. This
setup provided the necessary computational resources for smooth rendering of high-fidelity graphics, real-time
physics simulations, and seamless interaction between the Python codebase and the simulation environment.
The scalability of Unreal Engine allows for adjustments in graphical fidelity and simulation complexity, ensuring
broad accessibility across various hardware configurations. The AirSim plugin also supports scalability, allowing
modifications in vehicle models, sensor configurations, and data fidelity to maintain performance on different
systems.

Proposed system architecture
Our proposed architecture aims to elevate the cognitive capabilities of autonomous systems by seamlessly
integrating actor-critic RL, powered by LLMs. This system navigates partially observable environments, utilizing
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Fig. 1. Blocks environment on UE 5 with Vehicle Client!°.
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Fig. 2. Architecture of the proposed system.

object-oriented semantic properties for context-aware decision-making. Our research focuses on leveraging
LLMs advanced natural language processing (NLP) abilities to enhance existing perception approaches.
Building upon AirSim’s Python scripts we intend to demonstrate how LLM-driven agents can optimize an
autonomous system’s understanding of its surroundings. we've developed a novel system architecture comprised
of several interconnected modules, as illustrated in Fig. 2. Each module plays a critical role in enabling the
system’s intelligent behaviour. We'll delve deeper into each module and its function in the following subsections.
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Point clouds mapping

Our system’s environmental perception begins with the generation of a 3D point cloud. We capture lidar sensor
data, represented as a set of 3D coordinates: P = {(xi Y zi)} for I=1,2,...,n, where n is the number of points
in the point cloud. To model the spatial distribution of these points around the agents position, we utilize
a multivariate Gaussian distribution. This allows us to estimate f,, in Eq. 1, where the amplitude (A) and
standard deviations (o) of the distribution shape the point cloud’s structure. As visualized in Fig. 3, this phase
provides the fundamental geometric presentation of the environment, upon which our system’s understanding
is progressively refined.
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We augment the initial point cloud to achieve denser coverage and incorporate visual information. First, the
AirSim APTs depth perspective image is decoded and converted it to grayscale. Next, 2D image is reprojected
into 3D space using a projection matrix as shown in Eq. 2. Combining it with the initial point cloud, results
in a denser representation called f, . This denser point cloud retains the geometric accuracy of the lidar
measurements while incorporating additional detail from the depth image. Finally, we apply a colormap function
to assign RGB colours to each point based on its corresponding image pixel using Eq. 3, enhancing the visual
quality of the point cloud (as shown in Fig. 4).

~0.501202762 0.0 0.0 0.0 x

3 0.0 ~0.501202762 0.0 0.0 y ,

fsp (2,y) = 0.0 0.0 10.0  100.0 depth(z,y) 2
0.0 0.0 100 0.0 1

[ri,bi, 9i], xi,y; validin png
[0, 0, 0], otherwise

Concurrently AirSim’s object detection module scans each frame for objects of interest. Upon detection, the
system queries the Al search index to retrieve previous instances of the object. If a match is found and positional
parameters align, the object is considered redundant, streamlining the robot’s navigation. However, if the object
is not previously recorded, or its position has significantly changed, the image and its sensory data are sent to
the ViH model for analysis. To further track changes, we employ Shi-Tomasi corner detection, and the Lucas-
Kanade optical flow algorithm as shown in Fig. 5. These updates are then incorporated into the Al search index.
Additionally, our system identifies instances where previously detected objects have been removed, ensuring the

Fig. 3. A point cloud of objects in front of the agent using LIDAR data.
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Fig. 4. Mapping RGB image using point clouds from LIDAR sensor and depth perception.

Fig. 5. Object Detection and Tracking: Red dots denoting object detection and green Lines indicating the
tracking of objects shift.
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Given: Previous point cloud Pyrev, Object O, Al search index /
Modules: Object Detection (OD), Al Search (AS), Voice in Head (ViH), Feature Tracking (FT)
Inputs: Current point cloud Pcurrent, Current image frame f, Object position (pos)
1: OD(f) - Query(l, 0)
2: if Match(O, /(0)) and pos is_alligned:
Redundant_object -> Continue_navigation
3: else if not Match(O, I(0)) or pos is_not_alligned:
ViH(f, Sensory_data, environment)
4: FT(Pcurrent, Pprev) -> Shi_Tomasi and Lucas_Kanade
5: Output: Update(/)

Algorithm 1. Point cloud object tracking and mapping.

Given: Potential Action A, Queries based on uncertainties Q, Feedback signal F, Refined actions A’
Modules: Actor LLM A_LLM, Critic LLM C_LLM, Human Feedback (Optional) HF
Inputs: Partially observable environment state S, Chat history (r)
1: if New_Object(S) - proceed to Step 2
Else return to monitoring environment (S)
A_LLM(S, 1) = (A, Q)
C_LLM(S, A, Q, t) > (F, A")
if Positive_Feedback(F) - Update(A_LLM, C_LLM) & Store(S, A, F, )
if Negative_Feedback(F) & Uncertain_Critic(F) - HF(S, A, Q, m) & Update(A_LLM, C_LLM)
if Negative_Feedback(F) & Certain_Critic(F) - Reset(S) & A_LLM(S, F, ) > A
Output: Reward_Function(S, A, F, )

NouhRWN

Algorithm 2. Voice in head.

AT search index accurately reflects the dynamic environment. The working of point cloud object tracking and
mapping is discussed in Algorithm 1.

Voice in head RLHF implementation

We propose the Voice in Head model, a Proximal Policy Optimization (PPO)** eqw based RLHF Framework
inspired by the ‘HOLISTIC’ model in neurobiology of language proposed by*. This node acts as a control centre,
orchestrating the system’s learning process and facilitating training of the agent. It incorporates human feedback
to guide the AT’s decision-making for unseen cases. The Actor and Critic LLMs are the driving force behind the
RLHF framework. The Actor LLM leverages visual and sensory input from partially observable environment
to generate potential actions and inferences in response to the current environmental state and pose queries.
The Critic LLM provides constructive feedback by evaluating these actions and observation against ground
truth from the environment and answer Actor’s queries. If the Critic is unsure about the Actor’s responses even
after continuous feedback, human intervention is triggered to avoid hallucinations. This iterative feedback loop
ensures continuous improvement and adaptation of the system’s understanding during the training process. The
working of ViH is shown in Algorithm 2.

Actor

The Actor module serves as the system’s perceptual and decision-making core. It leverages a Large Language
and Vision Assistant (LLVA) to analyse the environment, generate inferences, and orchestrate actions. We
explored both GPT-4, 2023 and Google Gemini Advanced®, for their robust natural language understanding
and function execution capabilities. These models offer complementary strengths across multiple knowledge
domains. After getting the inferences from vision assistant, Actor can perform functions in Egs. 4, 5 and 6 as
shown in Fig. 6 where Prompt 1 contains static instructions about the role of agent and the expected output.
Prompt 2 contains dynamic instructions which can change after feedback. It is also equipped with GPS data,
car state, lidar inference and positional arguments about objects in the scene using inbuild functions of Vehicle
Client in Airsim api.

1, action #0

Throttle = { 0, action =0 (4)
1, action =0
Brake = { 0, otherwise )
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Fig. 6. Functional flow diagram of the system proposed system.
0, action = 1
0.5, action = 2
Steering = —0.5, action = 3 (6)

0.25, action = 4
—0.25, otherwise

Critic

The Critic LLM plays a pivotal role within the ViH framework, serving as a guiding force in the RL process. It
receives the Actor LLM’s proposed action (A), the current environmental state (S), the Actor’s queries (Q), and
the chat history (7) as mentioned in Algorithm 2. The Critic’s primary responsibility is to evaluate the quality
and feasibility of proposed actions, providing the Actor with feedback (F) that directly shapes its decision-
making and behaviour. This iterative feedback loop fosters continuous learning and adaptation throughout the
training process.

The Critic LLM’s evaluation and subsequent feedback are directly incorporated in the reward function:

R(t) = a * LLM FEwval(A, S, Q, ) + 8 = OD(S) + v * R_DBase(S, AT) (7)

Here, LLM_Eval(A, S, Q, m) captures the Critic’s output and the Actor’s refinement, while OD(S) encourages
actions leading to object discovery. R_Base(S, AT) ensures fundamental elements like speed and distance are
considered. The Critic, through its feedback (F), influences the reward, guiding the Actor toward optimal
decisions.

In situations of high uncertainty, the Critic can initiate human intervention (HF). Human experts then
provide additional instructions to guide the Critic and Actor LLMs. Critically, the chat history (), which acts as
the system’s policy, is directly the incremental updated (A7) based on these interactions:
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A =n x VX R(t)+ log(m) (8)

Where 7 which usually is the learning rate but here, it’s the compression rate to keep token usage under limit.
Compression is done by summarization of previous content based on their cumulative rewards R(t), for time ¢.
log(m) represents the latest entry to the chat which is also quantized.

Through these updates, the Critic learns alongside the Actor, leading to increasingly robust decision-making.
Let’s assume a discount factor § which controls the importance of future rewards, the cumulative reward at the
end of an episode is given by:

R _Final = ¥ t 8% —1) % R(t) )

Object-Oriented semantics

Object-oriented semantics provides a powerful framework for representing and managing the knowledge
acquired by autonomous systems during navigation. In this approach, entities within the environment (such
as vehicles, landmarks, or obstacles) are modelled as objects with associated properties and relationships. This
structured representation mirrors how humans intuitively perceive and interact with the world, establishing a
common ground between machine and human understanding. Crucially, object-oriented semantics facilitates
several key benefits for robotic perception and decision-making. By defining objects and their interrelationships,
object-oriented semantics allow an autonomous system to reason about the broader context in which it operates,
rather than just reacting to isolated data points. The structured nature of this approach promotes efficient
storage, retrieval, and updating of information within a knowledge base, enabling the system to learn from past
experiences and adapt its behaviour. Furthermore, the ability to reason about objects with defined properties can
significantly reduce time complexity in navigation tasks, as the system can make more informed decisions based
on its structured understanding of the environment.

Azure Al search

We leverage Azure Al Search as a centralized knowledge repository to manage the object-oriented semantic
data acquired throughout navigation. Within this repository, we store diverse data elements crucial for
decision-making, including raw visual input from the vehicle’s cameras, calculated rewards reflecting episodic
performance, positional arguments related to both the vehicle and detected objects, and supplementary sensory
data. Importantly, we structure the information within AI Search around episodes, where each episode serves
as a complete navigation cycle. This organization enables the system to retrieve and reason about contextual
information during learning and task execution.

Language transformation

To ensure the data stored within Azure AI Search is enriched with contextual understanding, we employ a
dedicated Language Transformation LLM. This LLM’s primary responsibility is to analyse the entirety of the
episodic conversations, which include the interactions between the Actor and Critic LLMs, as well as any human
intervention instances. The LLM extracts salient semantic elements, encompassing object descriptions, actions
performed, and overall episode goals. Subsequently, this information is transformed into structured JSON
properties. These properties are then integrated alongside images, rewards, and sensory data within Azure Al
Search, adding a layer of contextual depth to the stored information.

Al search query with LLM frontend

For user-friendly interaction with the accumulated semantic data, we implement a synergistic combination
of Azure Al Search’s query mapping capabilities and a front-end LLM. AI Search excels at translating natural
language user queries into structured search requests. The LLM frontend functions as an intelligent user
interface, equipped with Natural Language Processing (NLP) capabilities to decipher the intent behind user
queries. It collaborates with the query mapper by mapping the user’s query to pre-defined functions within
the AI Search API. These targeted searches within the knowledge base facilitate efficient retrieval of the most
relevant information in response to the user’s natural language query.

Experimental results

To comprehensively assess the capabilities of our proposed system, we designed a series of controlled experiments
within simulated environment. This simulation setting offers the advantages of precise environmental control,
the ability to test a vast array of scenarios, and safe, risk-free experimentation that is crucial for autonomous
systems. We designed a tiered experimental setup to progressively test the system in environments of increasing
complexity. As illustrated in Fig. 7, we employed three distinct environments: the “Blocks” environment
enhanced with strategic asset additions for simpler complexity, Unreal Engine’s sample modern house project
replicating a cluttered indoor setting for moderate complexity, and finally, the “Downtown West” environment
simulating a dynamic outdoor urban landscape.

Object tracking

Our evaluation for this section focuses on the effectiveness of triggering the ViH model pipeline during
navigation and mapping. We assess this by examining “Hits” and “Misses” in triggering the pipeline for each
individual instance. A “Hit” signifies a successful triggering when the system correctly identified the need to
activate the ViH model. Conversely, a “Miss” indicates that the system failed to trigger the ViH model when
it was necessary. It's important to note that we are primarily concerned with the overall triggering success
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Easy Medium Hard

Fig. 7. Unreal engine simulation environments used during experimenting!®!!,

Environment | Total trigger instances | Hits | Misses

Easy 179 165 14
Medium 524 471 53
Hard 1067 883 | 184

Table 1. Triggering summary during mapping.

rate, rather than dissecting the specific causes of misses (whether due to object tracking or semantic search or
object detection failures). This is because isolating these individual factors falls outside the scope of our current
research. The number of Hits account to the number of episodes an agent will go through to analyse the whole
map.

Table 1 summarizes the number of trigger instances across the three environments:

A hit accuracy of 92.178%, 89.885% and 82.755 for easy, medium, and hard levels respectively. Here total
trigger instances are determined by the number of unique objects spread across the environment. These values
are determined using ground truth from the environment.

Navigation

To comprehensively assess the navigation capabilities of our proposed model, we conducted a comparative
evaluation against AirSim’s built-in Deep Q-Network (DQN) script and the Proximal Policy Optimization
(PPO) algorithm. Both baseline models were configured to operate with the same trigger conditions as our ViH
model, powered by GPT-4 and Gemini Pro (tested separately). We consider each trigger instance equivalent
to a RL episode. To account for variations in internet connectivity and server response times, we focused on
recording the internal processing time of each model for an episode, excluding the time spent on API requests.
It's worth noting that ViH-GPT utilizes GPT-V for initial vision analysis before sending results to GPT-4, while
ViH-Gemini employs a single Gemini Pro model for combined vision and semantic understanding.

For all three difficulty environments, we tracked internal processing time per episode along with episode
outcomes indicating success or failure (Figs. 8, 9 and 10). Within these figures, grey dots represent failed episodes,
while red dots signify episodes terminated due to collisions. Additionally, we monitored timesteps throughout
the training process. Each timestep corresponds to a single action taken within an episode, providing a granular
measure of performance. Finally, rounded off cumulative rewards (calculated using Eq. 9 with a discount factor,
6=0.2) acquired over training for all models in each environment are presented in Fig. 11. Here, the episodes
having successful execution were observed to receive a reward around +1 while the rest received a reward
around 0. Episodes undergoing collision received a reward around — 1.

Table 2 presents a detailed comparison between the four navigation models across all three environments.
The following four key metrics form the basis of our evaluation:

o Success Rate (%): The percentage of episodes where the navigation agent successfully reached the designated
goal within a predefined time limit.

o Collision Rate (%): The frequency of collisions with obstacles during navigation, expressed as a percentage of
the total episodes for that level.

o Total Timesteps: The cumulative number of atomic actions taken by an RL agent during navigation. This gran-
ular measurement reflects the overall execution time of all episodes for a given environment.

o Final Reward: The summation of all cumulative rewards, offering insights into the ability of a model to learn
and optimize decisions over time.

Semantic query comprehension and management

This section explores how our system interprets and manages natural language queries, both internally generated
and those provided by users. We analyse the average number of tokens employed by the LLMs, particularly
GPT-4 and Gemini Pro, during training episodes and when responding to user queries. Critically, we examine
how effectively the LLMs™ chat histories are summarized when reaching their respective token limits. This
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800

Success Rate 94.54 9333 75.15 | 0.00
(%)
Collision Rate (%) 0.00 0.00 3.63  |79.39
Easy a1
$9t 2,689 2,709 3,000 | 3,014
imesteps
Final Reward 156 154 118 | -131
Success Rate 92.14 90.66 70.06 | 0.00
(%)
Medium | Collision Rate (%) 2.55 2.76 6.58 76.86
Total Timesteps (seconds) | 7,428 7,546 8,683 | 8776
Final Reward 422 414 299 - 362
Success Rate 78.93 83.57 6591 | 0.00
(%)
Hard Collision Rate (%) 7.13 4.64 1223 |89.92
Total Timesteps (seconds) | 14,836 14,754 16,147 | 14,517
Final Reward 634 697 474 -794
Table 2. Comparison of ViH model with traditional models for navigation through the environment.
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Average Token Usage q
Compression
LLM Max Tokens | Training Episode | User Query | (%)
GPT -4 32,768 4,532 1,586 86.2
GPT -V | 128,000 87,294 56,243 -
Gemini |34 730 2,976 1,872 90.04
Pro

Table 3. Average tokens used by LLMs per training episode and user query vs. compression percentage after
reaching token limit.

Retrieval Queries (%) Actionable Queries (%)
Model Simple | Complex | Image | Simple | Complex | Image
ViH-GPT 95.00 85.00 85.00 |97.50 |80.00 90.00
ViH-Gemini | 95.00 | 82.50 80.00 |95.00 |70.00 80.00

Table 4. Response analysis for all queries.

summarization technique is essential for maintaining a manageable history size within the ViH system. Table 3
presents a comparative analysis, detailing the average token usage and the associated compression percentages
achieved for GPT-4 and Gemini Pro for different query types. Since GPT-V’s chat history is refreshed with every
usage, eliminating the need for compression.

Following extensive training, we evaluated the performance of both ViH-GPT and ViH-Gemini models in
accurately interpreting and responding to diverse user queries. This evaluation focused solely on the overall
system’s ability to handle queries, independent of the specific environments the models were trained in. Table 4
summarizes the percentage of correct responses for retrieval and actionable queries, further categorized by
complexity as follows:

« Simple Retrieval Queries (Total Queries: 80):

o “Where is the nearest ufoods?”

o “Is there a tree near you?”

« “What is the colour of table in living room?”
o Example - Where is the nearest ufoods?

Function Call - triggerAzureAlSearch(“nearest ufoods”).

Response (ViH-GPT) - “The nearest ufoods is at coordinates (28.7041, 77.1025), approximately 2.5 kilo-
meters north. Proceed along Main Street and turn left at the second intersection”

Response (ViH-Gemini) - “You can find the nearest ufoods at coordinates (28.7041, 77.1025), 2.5 kilom-
eters away. Head north for about 2 kilometers, then take a left turn at Baker’s Lane”

o Complex Retrieval Queries (Total Queries: 40)

« “Find me a quiet place to sit”

o “Recommend a restaurant serving Italian cuisine with good vegetarian options nearby””

o “Suggest me something to wear based on the weather?”

« Example - Recommend a restaurant serving Italian cuisine with good veg options nearby.

Function Call - triggerAzureAISearch(“restaurant serving Italian cuisine with good vegetarian options
nearby”).

Response (ViH-GPT) - “I recommend ‘La Bella Italia, located at coordinates (148.362, 8.023), known for
its excellent vegetarian pasta and pizza. It is 1.2 kilometers west, right after the city park”

Response (ViH-Gemini) - “Try ‘La Bella Italia; at coordinates (148.362, 8.023), which has great Italian
vegetarian dishes. It's 1.2 kilometers west of your location, just past the central library”

« Image-Based Retrieval Queries (Total Queries: 20):

« User uploads an image of a specific object. “Where is this object?”

o User uploads an image of a room. “Was there any book in this room?”
« User uploads an image of an award. “Was this award on the table?”

« Example - Where is this object?

Function Call - triggerImageSearch(img.jpg, query ).
Response (ViH-GPT) - “This object is on the second shelf of the bookcase in the living room at coordi-
nates (8.232, 65.420). Look next to the blue photo frame.”
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Human Feedback vs Queries

Human Feedback Triggered
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Fig. 12. Number of times Human feedback was triggered for different types of queries by ViH-GPT.
Response (ViH-Gemini) - “The object is on the second shelf of the bookcase in the living room at coor-
dinates (8.232, 65.420). It’s next to the green vase”
« Simple Actionable Queries (Total Queries: 40):
« “Go to living room”
« “Go near the tree”
« Example - Go to living room.
Function Call - triggerAzureAlISearch(“living room location”).
Action - gotoCoordinates(10.021, 60.204).
« Complex Actionable Queries (Total Queries: 20):
« “Goto any animal statue but take a longer route”
o “I'want to wash my hand, lead me to it”
« Example - I want to wash my hand, lead me to it.
Function Call - triggerAzureAlSearch(“nearest washroom location”).
Action - gotoCoordinates(15.852, 69.481).
« Image-Based Actionable Queries (Total Queries: 10):
o User uploads an image of a cluttered desk. “Goto this workspace.”
o User uploads an image of a light fixture. “Go to the switch that will turn this light off”
o Example - Go to the switch that will turn this light off.
Function Call - triggerImageSearch(img.jpg, query).
Action - gotoCoordinates(7.119, 64.696).
For retrieval queries, responses focused on the use of semantic search (LLM function calls combined with Azure
Al Search). Actionable queries required the system to both retrieve information and perform actions to fulfill the
request. To assess the accuracy of the models’ responses, results for ViH-GPT and ViH-Gemini were compared
against a manually verified ground truth.
Human feedback component
This component plays a critical role in refining the model’s responses. Human interventions are triggered in
instances where the system’s confidence in its response is low or when the provided response is identified as
potentially incorrect. The nature and frequency of these interventions are illustrated in Fig. 12, which compares
the instances of human feedback required for different query types by ViH-GPT and ViH-Gemini.
In our analysis, we found that ViH-GPT required more human feedback compared to ViH-Gemini.
Specifically, ViH-GPT called for human feedback approximately 33% more frequently across various query
types. This difference highlights ViH-GPT’s greater reliance on human intervention to ensure response accuracy,
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particularly in complex and image-based queries. For instance, ViH-GPT needed more feedback for complex
retrieval and actionable queries, indicating challenges in these areas.

Discussion

In this section, we delve deeper into the experimental results presented earlier and explore the implications
for our ViH system. We analyse the performance trends between ViH-GPT and ViH-Gemini, focusing on
their efficiency in query handling, responsiveness to user requests, and adaptability when facing challenging
queries. Additionally, we examine the limitations revealed during the evaluation, providing insights for future
refinements and potential avenues for enhancing the system’s autonomous capabilities.

Object tracking

The tiered approach adopted for evaluating object tracking proved valuable in assessing the system’s ability
to learn and adapt its navigation strategies across environments with varying difficulty levels. This evaluation
provided comprehensive performance benchmarks, highlighting the system’s strengths and areas for potential
improvement under real-world complexities. Notably, the modular design of the approach facilitates replication
for future research endeavors.

The results for triggering the ViH model pipeline during navigation and mapping are promising. The achieved
hit accuracy indicates a high success rate in correctly identifying situations that necessitate ViH model activation
(ranging from 92.178% in easy environments to 82.755% in hard environments). It’s important to remember
that these “misses” where the system failed to trigger the pipeline do not encompass the specific reasons for the
failures, such as limitations in object tracking, semantic search, or object detection. A deeper dive into these
potential causes might be a consideration for future investigations.

Navigation

The comparative evaluation reveals prominent differences in the navigation capabilities of the tested RL models:
ViH-GPT, ViH-Gemini, Simple PPO, and AirSim DQN. Our proposed ViH models consistently outperform
both baseline models (PPO and DQN) across all difficulty levels in terms of success rate, collision rate, and
cumulative reward. This highlights the advantages of incorporating LLMs for both the Actor and Ciritic roles
within the RL framework, as they appear to offer significant improvements in decision-making and navigation
compared to more traditional RL models. Furthermore, the ViH models demonstrate a remarkable ability
to navigate complex environments while minimizing collision rates. This suggests a superior understanding
of spatial relationships and the ability to avoid obstacles effectively, potentially enabled by the rich semantic
information the LLMs incorporate into their decision-making processes.

It was observed that DQN failed all the tests with huge collision rates given the model was equipped with
no semantic understanding and decision-making working on randomized concepts which weren’t suitable for
the given episode frames. The PPO implementation had more information about the sensory data to perform
more informed decisions The observed dominance of ViH-GPT in easy and medium environments suggests
that separating vision processing (with GPT-V) and language understanding (with GPT-4) offers advantages in
less complex settings. This modularity might enable faster decision-making and a more efficient use of language
modelling capabilities. Whereas ViH-Gemini outperformed the other models in the hard environment. This
indicates that combining vision and language processing within a single LLM can be particularly beneficial when
navigating highly intricate surroundings, where understanding spatial context and visual cues is important.
When analysing these metrics, it's crucial to consider them as an interconnected system. A high success rate
coupled with a low collision rate indicates that the model navigates effectively. Total timesteps should be analysed
in the context of reward — a lower number of timesteps combined with high final reward implies efficiency in the
model’s navigation strategy.

It was also observed that episodes terminated faster when a collision occurred and took more time when a
failure occurred without any collision due to stalling in Figs. 8, 9 and 10. Further it can be observed in Fig. 11
that due to the approximation in result values to keep it simpler for LLM’s understanding, the cumulative reward
vs. episode graph shows a close to linear representation for all the models, where the larger is the positive slope
the more efficient is the model. DQN showed a negative slope in all the scenarios.

Semantic query comprehension and management

Our analysis of LLM token usage from Table 3 reveals significant differences between GPT-4 and Gemini Pro.
These differences highlight how each LLM processes and manages information. GPT-4, had a larger token
allowance and utilized more tokens during training episodes on an average which could be due to it getting
inferences from GPT-V separately which in case Gemini Pro is integrated within one mode as this opposite in
the case of average token usage to process user queries. Its higher compression percentage suggests an ability
to generate concise responses. Gemini Pro offered a higher compression ratio of 90.04% which means that
whenever it reached its token limit it summarized the chat history to 9.96% of its original size. GPT-V, on the
other hand, consistently uses a substantially greater proportion of its available tokens. While these differences in
token usage patterns might lead to variations in response generation style (e.g., verbosity, conciseness), further
investigation is needed to correlate these patterns with specific qualitative aspects of the models’ responses.

The ViH system, particularly in the ViH-GPT configuration, demonstrates high accuracy in handling both
retrieval and actionable queries (Table 4). Across query complexity levels (simple, complex, and image-based),
the system consistently maintains a reliable level of performance. This robustness showcases the power of LLMs
to understand natural language instructions and effectively combine semantic search with the ability to initiate
actions within the environment. It's worth noting that, in certain cases, image-based queries might have achieved
greater accuracy due to the potential effectiveness of Azure AI Search in handling visual search tasks.
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The ViH system demonstrates impressive capabilities in understanding and responding to various user
queries. However, the analysis of instances where human intervention was needed reveals a key focus area
for improvement. By understanding the specific circumstances triggering human feedback, we can pinpoint
potential shortcomings in the LLMs’ semantic understanding or reasoning processes. Importantly, our approach,
incorporating LLMs alongside a human feedback mechanism, has demonstrably reduced the frequency and
impact of LLM hallucinations.

Conclusion

The development of the ViH system offers compelling insights into the intersection of robotics, LLMs, and the
pursuit of artificial general intelligence (AGI). This research highlights the transformative potential of LLMs
when strategically integrated into autonomous robotic systems. By empowering a robot to understand natural
language instructions, leverage semantic search, and initiate contextually relevant actions, we take a significant
step towards systems that operate more flexibly and intuitively within real-world environments. Our exploration
underscores the intricate relationship between language understanding, semantic representation, and embodied
action. The ViH framework’s success in grounding language commands within a physical environment suggests
that semantic grounding, rather than solely relying on massive language datasets, could play a pivotal role in
developing more robust AGI systems. Furthermore, the demonstrated advantages of modularity, as seen with
the separation of visual processing and language modeling in ViH-GPT, call for a careful consideration of
architectural design choices in intelligent systems.

Crucially, our experimental findings illustrate the continued value of human feedback in refining and
guiding LLM-based systems. While LLMs exhibit remarkable capabilities, their tendency towards hallucination
necessitates careful oversight. The integration of RLHF within the ViH system offers a promising avenue for
mitigating these challenges. This approach highlights the potential for hybrid systems, those that leverage both
the strengths of powerful LLMs and the nuanced understanding of human input, in the pursuit of AGI. As
we forge ahead, it is vital to acknowledge the limitations of purely data-driven approaches. While LLMs excel
at pattern recognition and language generation, they often struggle with complex reasoning, common-sense
understanding, and generalization to novel scenarios. This work suggests that future advancements in AGI
might necessitate a deeper exploration of knowledge representation, symbolic reasoning, and the integration
of diverse cognitive abilities. The ViH system represents a significant contribution to the fields of robotics and
intelligent system design. This research paves the way for further exploration into the role of LLMs, semantic
grounding, modular architectures, and the nuanced interplay between human guidance and Al capabilities as we
strive for increasingly intelligent and adaptable robotic systems. This work opens up several promising avenues
for future research which include conducting in-depth profiling of GPT-4 and Gemini Pro, examining factors
such as response length, accuracy, and processing efficiency, would provide a deeper understanding of their
respective strengths and weaknesses for different query types. Also, the work can focus more on targeted data
augmentation by expanding the training datasets with complex queries and scenarios where hallucinations may
occur could improve the models’ robustness and reduce the need for human intervention. Another futuristic
scope will be towards developing intelligent techniques for identifying when human feedback is truly necessary,
as well as exploring alternative reward functions within the RLHF framework, could further optimize the
human-AI collaboration within the ViH system.

Data availability
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arketplace/en-US/product/realistic-rendering https://www.unrealengine.com/marketplace/en-US/product/6bb
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