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A B S T R A C T   

Ransomware is a type of malware that blocks access to its victim’s resources until a ransom is paid. Crypto- 
ransomware is a type of ransomware that blocks access to its victim’s files by the use of an encryption algo-
rithm. This encrypted file remains permanently blocked, even if the victim is able to remove the ransomware 
from the infected file. This has forced victims to pay the ransom demanded in exchange for a decryption key, 
although the decryption key provided is not guaranteed to work. To address this situation, we propose a pre- 
encryption detection algorithm (PEDA) for detecting crypto-ransomware prior to the occurrence of any 
encryption. The PEDA has two levels of detection. The first is a signature repository (SR) that identifies any 
matches of the signature with that of known ransomware. The second detection level uses a learning algorithm 
(LA) that can detect both known and unknown crypto-ransomware. LA uses a machine learning approach to train 
the predictive model using data from the application program interface (API). In order to understand PEDA 
functionality, LA is being evaluated using conventional metrics and unconventional metrics. Conventional 
metrics such as the true positive rate, accuracy, and precision can provide important performance indicator, but 
not comprehensive enough to assess the LA capability. Six new metrics had been proposed to provide greater 
insight. Based on the results, it can be concluded that LA had achieved its objective of detecting crypto- 
ransomware before the encryption is viable and that its performance is robust with a high net benefit.   

1. Introduction 

Ransomware, as the name implies, is malware that demands the 
payment of ransom from its victim. The first of three types of ransom-
ware is called scareware, which tries to deceive its victim with a false 
threat. The other two types block access by the victim to their resources 
until a ransom is paid. This type of ransomware achieves its goal using 
one of two approaches, i.e., either by blocking access to the victim’s 
system or encrypting the victim’s files and data, as illustrated in Fig. 1. 
Ransomware that uses the first method is called locky-ransomware, and 
the latter is called crypto-ransomware. Crypto-ransomware is consid-
ered to be more destructive because the encrypted file remains inac-
cessible even after complete removal of the ransomware [1]. The 
encrypted file can only be restored to its normal state by the use of a 
specific decryption key. Depending on the encryption algorithm used, 
the use of any brute force method could take many years to recover the 
decryption key. As such, many corporations have been forced to pay the 
ransom in exchange for a decryption key, which may itself not always 
work [2]. 

Evaluation metrics are important tools used as performance in-
dicators for a predictive model based on the machine learning approach 
[4]. However, conventional metrics mainly focus on providing bench-
marks for predictive models but lack the capability to assess their per-
formance regarding the likelihood of correct and wrong predictions, 
their optimum performance ranges, and the benefits of using a given 
predictive model. 

Therefore the contribution of this paper is three folds, first is to use 
application program interface (API) before encryption happens as the 
data for analysis. The second contribution is the development of pre- 
encryption detection algorithm (PEDA) that has two levels of detec-
tion to improve the overall detection performance and accuracy. The 
first level of detection is called Signature Repository (SR) that uses 
signature matching for detection. The second level is called Learning 
Algorithm (LA) that uses a predictive model for detection. The third 
contribution is to propose six new metrics that can provide greater 
insight regarding the capability of the LA. 

This paper is further organized such as the second section is the 
critical analysis of past literature and the research gap found. The third 
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section provides the experimental setup for the implementation and 
performance evaluation of the PEDA. The fourth section discusses the 
results obtained from the experiment and its implication. The fifth sec-
tion provides the conclusion by realigning the result with the proposed 
contribution set forth in this paper. 

2. Related work 

Machine learning is now being used to detect crypto-ransomware 
before the encryption process starts. The common practice when using 
a supervised machine learning method is to segregate the dataset in an 
80:20 ratio, where 80% of the dataset is used to train the machine 
learning algorithm to produce a predictive model. This predictive model 
is then used to provide prediction results based on 20% of the dataset. 
The data segregation must be random but results in a similar ratio of 
ransomware and goodware. 

The accuracy metric indicates the ratio of correct pre Based on the 
prediction results, the performance of the predictive model can be 
evaluated using a confusion matrix, as shown in Fig. 2. In this matrix, a 
true positive result indicates the number of predictions correctly pre-
dicted to be positive. A false positive indicates the number of predictions 
incorrectly predicted to be positive. A true negative indicates the num-
ber of predictions correctly predicted to be negative. A false negative 
indicates the number of predictions incorrectly predicted to be negative. 

Based on the confusion matrix result, evaluation metrics can be 
derived to provide insight regarding the performance of the predictive 
model [5]. Some typical and popular conventional metrics used include 
accuracy, true positive rate (TPR), false positive rate (FPR), true nega-
tive rate (TNR), false negative rate (FNR), precision, and F-measure. 
dictions over the total number of predictions, as shown in Eq. (1). This 
metric determines how well the predictive model is able to make correct 
predictions. 

Accuracy =
TP + TN

TP + FP + TN + FN
(1) 

The TPR indicates the ratio of predictions correctly predicted to be 
positive over the total number of actual positive conditions, as shown in 
Eq. (2). This metric determines how well the predictive model can 
correctly predict positive values. Other names for this metric include 
recall, sensitivity, and detection rate. 

TPR =
TP

TP + FN
(2) 

The FPR indicates the ratio of predictions incorrectly predicted to be 
positive over the total number of actual negative conditions, as shown in 
Eq. (3). This metric determines the extent to which the predictive model 
incorrectly predicts positive values. 

FPR =
FP

FP + TN
(3) 

The TNR, which is also called specificity, indicates the ratio of pre-
dictions correctly predicted to be negative over the total number of 
actual negative conditions, as shown in Eq. (4). This metric determines 
how well the predictive model can correctly predict negative values [6]. 

TNR =
TN

TN + FP
(4) 

The FNR indicates the ratio of predictions incorrectly predicted to be 
negative over the total number of actual positive conditions, as shown in 
Eq. (5). This metric determines the extent to which the predictive model 
incorrectly predicts negative values. 

FNR =
FN

FN + TP
(5) 

The precision metric indicates the ratio of predictions correctly 
predicted to be positive over the total number of positive predictions, as 
shown in Eq. (6). This metric determines how much the predictive model 
can be trusted when the prediction is positive. 

Precision =
TP

TP + FP
(6) 

The F-measure, which is also called the F-score or the F1-score, is 
actually the mean of the TPR and precision, as shown in Eq. (7). This 
metric determines how well the predictive model can correctly predict 
positive values while taking into consideration both FN and FP. 

F =
2TP

2TP + FP + FN
(7) 

The above metrics are commonly used to evaluate the performance 
of a predictive model produced by the machine learning method, but are 
these can be inadequate in certain cases. To be effective, evaluation 
metrics must provide insight regarding the strengths, weaknesses, and 
areas for improvement of a predictive model. Our objective in this paper 
is to propose new metrics for the evaluation of a predictive model used 
in ransomware detection. 

Table 1 shows a summary of the evaluation metrics currently used in 
malware detection using the machine learning technique. As shown in 
the table, the most commonly used metrics in malware detection are 
TPR, followed by accuracy and precision. These metrics shows provide 
detection performance but does not show the capability of the predictive 
model. This is our first research gap for this paper. 

Table 2 shows a summary of the achievement and limitation of the 
literature. Based on this, we can stress that none of the above provides 
early detection of crypto-ransomware using data prior to the encryption 
process. This stage is actually very crucial to avoid crypto-ransomware 
from encrypting files and hold it as a hostage to demand a ransom. 
This is the second research gap for this paper. The third research gap is 
obviously to develop the detection algorithm that can effectively detect 

Fig. 1. Types of ransomware (adapted from [3]).  

Fig. 2. Confusion matrix.  
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crypto-ransomware based on data from the second research gap. 

2.1. Strengths 

There are several important advantages in using the above metrics, 
the main one being ease of comparison of the performance results with 
those obtained in other research works. Using the same metric ensures 
the use of the same calculation formula, which enables a simple and 
direct comparison of the calculated values. The second advantage of 
using these metrics is their simple and easy formulas that enable fast and 
easy calculation. The third advantage is their good reflection of the 
degree of correctness and incorrectness of the predictions for both 
positive and negative results. This is important, especially in the eval-
uation of a supervised machine learning algorithm, which consists of 
pre-labelled positive and negative data. The fourth advantage of these 
metrics is that their values range between zero and one, which facilitates 
easy comparison and interpretation of the metrics. 

2.2. Weaknesses 

These metrics also have some weaknesses, the first being that none, 
except for accuracy, use all values in the confusion matrix. This means 
that they may not fully represent the results in the confusion matrix on 
which their formulas are based. The second weakness is the inability of 
the individual metrics to provide an indication of how well the predic-
tive model can differentiate between positive and negative results. This 
is important, especially for malware detection, which requires that a 
prediction distinguishes between goodware and malware. The third 
weakness is that these metrics provide no indication regarding points of 
success and failure, i.e., a range at which the predictive model will 
perform at its optimal level. The fourth weakness is the lack of indication 
of the benefits of using a given predictive model. 

Table 1 
Evaluation metric.  

No. Ref. Metric 
Acc TPR FPR TNR FNR Prec F-m 

1 [7]        
2 [8] √ √    √  
3 [9]        
4 [10] √ √    √ √ 
5 [11]        
6 [12]  √ √    √ 
7 [13]  √ √     
8 [14]        
9 [15]        
10 [16]        
11 [17]        
12 [18] √  √  √   
13 [19]        
14 [20]  √    √  
15 [21] √   √  √  
16 [22] √       
17 [23] √      √ 
18 [24]  √    √ √ 
19 [25] √ √ √     
20 [26] √ √    √ √ 
21 [27]        
22 [28]  √    √  
23 [29]  √ √   √ √ 
24 [30] √       
25 [31]  √    √ √ 
26 [32]  √ √     
Total 9 12 6 1 1 9 7 

Acc – Accuracy. 
Prec – Precision. 
F-m – F – measure. 

Table 2 
Critical analysis.  

No Ref Achieved Limitation Research findings 

1 [7] Immediately blocked 
and notify for its 
removal 

Future to test on 
other platforms 
such as Windows 
and Android 

No guarantee 
ransomware will 
attack honey files 

2 [8] Software-Defined 
Networking (SDN) 
improves network 
protection with simple 
rules 

Future to test on 
healthcare implant 
and other internet- 
connected gadgets 

Did not try on 
goodware 

3 [9] 8 API exists only in 
ransomware 
4 API ransomware 
statistically significant 
6 API frequency > 3 
std dev 

Nil API 
differentiation, no 
actual detection 
mechanism 

4 [10] Best recall at 99.8% 
using Decision Tree 3- 
gram and 4-gram, K 
Nearest Neighbor 2- 
gram. 

Cannot distinguish 
well crypto wall, 
locky and 
prevention 
according to 
accuracy for binary 
classification 

10 minutes, API 
call comparison 

5 [11] Windows platform, 
detection by 
monitoring abnormal 
filesystem and registry 
activities. Android 
platform by controlling 
permissions. 

Future to test on 
Linux and Mac 
platform 

Suggestion, but no 
actual detection 
mechanism 

6 [12] Binary; F-measure, 
TPR, FPR, MCC 
Long Short Term- 
Memory (0.996, 0.992, 
0, 0.986) 
Multi-class; TPR, FPR 
(0.972, 0.027) 

Future to use other 
deep learning 
algorithms such as 
sequential 
discriminative 
training of the deep 
neural network, and 
ensemble deep 
neural network 
DNN, CNN, RNN 

Monitor 
ransomware 
activities 

7 [13] AUC, Test Error, FPR, 
Detection Rate 
EldeRan (0.9949, 
0.0238, 0.0161, 
0.9634) 
VirusTotal (0.9993, 
0.0561, 0.0000, 
0.8530) 

Cannot detect 
ransomware that 
waits for user action 

10 seconds 
runtime limit 

8 [19] Malware only; 
homogeneity (0.767), 
completeness (0.609), 
v-measure (0.679), 
Mixture malware and 
legitimate operation; 
homogeneity (0.761), 
completeness (0.523), 
v-measure (0.620), 

Limitation, fails on 
samples that do not 
interact with 
resources 
monitored by the 
sandbox 

20 seconds 
runtime limit 

9 [20] VTCSandbox@8x runs 
102s, Precision (98.6) 

Nil Fast detection of 
time-based 
malware 

10 [21] Most accurate is CW 
with C = 4.0 and n = 6, 
train (0.940), test 
(0.918) 

Nil Virtual clock, did 
not mention 
detection 
technique 

11 [22] Sophisticated Attacker 
KuafuDet (96.20) 

Future work to use 
reinforcement 
technology to 
prevent APK from 
reverse-engineering 

3min, add weight 
vector, balanced 
accuracy metric 

12 [23] 500 data 
Accuracy w/o bigram 
(82%), Accuracy w/ 
RFA (92.9%), 
Combined (87.8%) 

Future to use 
ensemble classifier 
and trigrams 
technique 

Adversary 
detection, 
camouflage 
detector, FN 
metric 

13 [24] 

(continued on next page) 
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3. Methodology 

In this study, we collected crypto-ransomware samples from three 
sources, namely Old, VirusTotal, and theZoo. The Old source comprises 
samples used by the authors in [13], and VirusTotal and theZoo are two 
online-based repositories of malware samples available to the public. 
The obtained samples were analysed dynamically using the Cuckoo 
Sandbox analysis system to capture all the API requests in each sample. 
This information was extracted and converted into dataset format for 
machine learning training and testing of the LA from the PEDA. The test 
results were then evaluated using the proposed metrics. 

3.1. Data 

A total of 904 ransomware samples were ultimately collected from 

the three sources, as shown in Table 3 below. We used 491 ransomware 
samples (Old) and 942 goodware samples provided in [13]. Additional 
new ransomware samples were collected from online repositories 
available to the public, i.e., VirusTotal and theZoo, for a total of 357 
ransomware samples from VirusTotal and 56 ransomware samples from 
theZoo. 

In the data extraction phase, we generated three datasets, as listed in 
Table 4. Except for 91 ransomware samples, those from the Old dataset, 
used by the authors in [13], could not be processed by our Cuckoo 
Sandbox. This may have been due to our use of a different version of the 
program. The Full dataset contained all collected ransomware, both old 
and new. The third dataset, namely the pre-encryption (PE) dataset, 
consisted of ransomware samples that were characterized by API 
encryption from Windows. When a sample was identified as exhibiting 
encryption behaviour, the API data extraction process was stopped, as 
we only wanted data at the pre-encryption stage. 

3.2. Pre-encryption detection algorithm (PEDA) 

The PEDA for detecting crypto-ransomware uses the API at the pre- 
encryption stage to impede the encryption function of the ransom-
ware. Successful detection of crypto-ransomware at the pre-encryption 
stage is important to prevent files from being rendered irrecoverable. 
Fig. 3 below shows the process flow of PEDA, which involves two levels 
of crypto-ransomware detection. 

At the first level, signature matching is performed by comparing the 
suspected file with a signature of known crypto-ransomware stored in 
the signature repository (SR) through SHA-256 hashing. Although this 
method provides a fast and sure way of detecting known crypto- 
ransomware, it is very rigid, so even a minor change in the content of 
a file will result in a mismatch. At the second level, the LA is the trained 
predictive model using API data from both goodware and crypto- 
ransomware. This method is considered to be more robust in the 
detection of both known and unknown crypto-ransomware. Therefore, 
LA can be expected to detect new or unknown crypto-ransomware. 
These two detection levels complement each other very well; LA is 
slow but more robust, while SR is fast but very rigid. The combination of 
the two detection levels enables PEDA to detect known crypto- 
ransomware faster, and at the same time robust enough to detect 
similar behavioural crypto-ransomware with unknown signature. 

The signatures of new crypto-ransomware are automatically updated 
into the SR, which helps to improve detection ability at the first level. 
However, the performance of the LA in the predictive model, which runs 
from Step 5 to Step 11 in Fig. 2, must be evaluated to ensure that it can 
meet its objective. To do so, we applied evaluation metrics to gauge its 
performance and gain a thorough understanding of the model, which is 
the focus of this paper. Pseudo code for the PEDA is provided below to 
provide the reader with a better understanding. 

Table 2 (continued ) 

No Ref Achieved Limitation Research findings 

Malware Operational 
Plot Review (MOPR) % 
Correct (93.76), 

Future to use model 
phases of system 
behavior to detect 
the attack at an 
early stage. 

Network packet 
analysis 

14 [25] Accuracy support 
vector machine 
(0.944) 

Nil 5min runtime 
limit 

15 [26] Random Forest, 
accuracy Raw (97.43), 
IntF (98.78) 

Future to test on 
application files 
such as multimedia, 
document 
processing, device 
drivers, etc. 

Portable 
executable header 

16 [27] Able to detect author 
created Ransomware 
that can bypass two 
antiviruses 

Nil Portable 
executable 

17 [28] Able to detect the 
known and unknown 
type of Ransomware 

An attacker may be 
able to detect the 
artificial 
environment or run 
at kernel level that 
can thwart 
monitoring of 
UNVEIL 

Use author 
created 
Ransomware 

18 [29] J48 Decision Tree 
produces the best True 
Positive Rate of 97.1% 

Future to develop 
real-time 
Ransomware 
detection using 
cloud-based ML 
classifiers 

20min runtime 
limit 

19 [30] 91% accuracy Future to use 
Natural Language 
Processing (NLP) 
and spelling auto- 
correction 

Depends on 
availability of 
ransom note 

20 [31] 99% accuracy Future to detect 
other malware such 
as botnet and 
rootkit 

Structural 
Similarity Metric 

21 [32] The best result from 
Gradient Tree Boosting 
(GTB) with 98.25% 
TPR and 0.56% FPR 

Evaluate in large 
scale real setup 

Combine 
detection and 
preservation  

Table 3 
Sources of samples.  

No. Source Amount 

1 Old 491 
2 VirusTotal 357 
3 theZoo 56 
4 Goodware 942  

Total 1,846  

Table 4 
Dataset distribution.  

No. Dataset Ransomware Goodware Total 

1 Old 491 942 1,433 
2 Full 904 942 1,846 
3 PE 205 942 1,147  
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3.3. Learning algorithm (LA) 

The LA has two phases, the first involving discretization pre- 
processing to convert the dataset into discrete data. This phase im-
proves the ability of tree-based algorithms to distinguish the data 
pattern. The second phase involves training and testing the discrete data 
using the tree-based algorithm known as random forest (RF), using 10- 
fold cross-validation. RF was selected because it has performed very 
well in malware detection, as reported in [33]. In addition, it shows 
better capability than the decision tree in reducing the degree of data 
bias. We used 10-fold cross-validation to prevent data overfitting by the 
RF. 

3.4. Experiment setup 

The experiment was run on a Lenovo Thinkpad x230 equipped with 
an Intel processor i5-3320M with 8 gigabytes of memory. This laptop 
was configured to perform a dual boot up of two operating systems, i.e., 
Ubuntu 18, 04.3 LT and Windows 10 Professional. Cuckoo Sandbox 
2.0.7 and its prerequisite programs were installed on the Ubuntu oper-
ating system. Samples from Table 3 above were analysed using Cuckoo 
Sandbox, which then generated a report in JSON format. We wrote a 
Java program with the capability of extracting API data from the report 
and converting it into our preferred data format, i.e., CSV format. These 
steps were taken to create our datasets, as specified in Table 4. Once the 
datasets were ready, each one was discretized before testing with 10- 
fold cross-validation of the RF algorithm. The test results provided 
values for the confusion matrix, from which the conventional and our 
proposed metrics were calculated. 

Fig. 3. PEDA process flow.  
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3.5. Proposed metrics 

Metrics are important indicators used to evaluate the performance of 
a predictive model based on the machine learning approach. Their 
evaluation results provide a better understanding of the operational 
strengths and weaknesses of the model. In addition, the proposed met-
rics described below also provide insights not obtainable by conven-
tional metrics. 

3.5.1. Likelihood ratio (LR) 
The likelihood ratio (LR) is the likelihood that an API pattern can be 

identified in ransomware compared to the likelihood that the same API 
pattern can be found in goodware [34]. There are two types of LR, the 
positive likelihood ratio (PLR) and the negative likelihood ratio (NLR). 
In the PLR, a value greater than 10 indicates a strong differentiation 
between ransomware and goodware, which can be expressed as shown 
in Eq. (8). 

PLR =
TPR

1 − TNR
(8) 

An NLR value of less than 0.1 also indicates a strong differentiation 
between goodware and ransomware, which can be expressed as shown 
in Eq. (9). 

NLR =
TPR − 1

TNR
(9)  

3.5.2. Diagnostic odds ratio (DOR) 
The DOR is the ratio between the PLR and NLR, as shown in Eq. (10). 

This value can range from 0 to infinity, but if it value is greater than 100, 
this indicates that the predictive model can discriminate between ran-
somware and goodware [35]. 

DOR =
PLR
NLR

(10)  

3.5.3. Youden’s index (J) 
The J index summarizes the incorrect predictions made by the pre-

dictive model, as shown in Eq. (11). When J = 1, this indicates a perfect 
predictive model with no FPs or FNs [35]. 

J = TPR + TNR − 1 (11)  

3.5.4. Number needed to diagnose (NND) 
The NND determines the number of data required to obtain one 

correct positive prediction by the predictive model [35]. The smaller is 
the NND value, the better is the performance of the predictive model, 
which is expressed as shown in Eq. (12). 

NND =
1

[TPR − (1 − TNR)] 1
J

(12)  

3.5.5. Number needed to misdiagnose (NNM) 
The NNM determines the number of data required to obtain one 

incorrect prediction by the predictive model [35]. The higher is the 
NNM value, the better is the performance of the predictive model, which 
is expressed as shown in Eq. (13). 

NNM =
1

[

1 −
(TP+TN)

n

], (13)  

where n is the total number of data. 

3.5.6. Net benefit (NB) 
The NB determines whether the predictive model has provided a 

correct or incorrect prediction based on a cutoff point in terms of a 
probability threshold (P), which is expressed as shown in Eq. (14). To 

visualize how NB varies for different exchange rates, the authors of [36] 
plotted a graph of NB versus P ranging from 10% to 99% to determine 
the cutoff point for a positive or correct prediction: 

NB =

(
TP
n
−

FP
n

)
P

1 − P
, (14)  

where P is a probability threshold and n is the total number of data. 

3.7. Justification for the proposed metrics 

The LR utilises the TPR and TNR, which consist of values from all 
four quadrants of the confusion matrix and ensures that all values are 
represented and taken into consideration. In addition, the DOR is the 
ratio of PLR to NLR, which indicates how well the predictive model can 
differentiate between positive and negative results. This aspect is lack-
ing in conventional metrics. The J index also utilises TPR and TNR to 
provide a simple indication of the probability of the predictive model 
producing a correct prediction. NND and NNM provide the range of the 
number of data required for the predictive model to perform at its 
optimal level. Any deviation from this range may require the use of 
additional precautions. The NB, as its name implies, indicates the benefit 
provided by the predictive model, which can be helpful, especially when 
comparing its performance with those of other predictive models. 

4. Results 

The study results can be divided into two groups, as shown in Table 3 
and the Data column in Table 4. The first group consists of ransomware 
samples collected from different sources. This group is used to determine 
whether the sample has any variations that could affect the performance 
of the predictive model. The second group consists of different datasets 
to determine whether the PE dataset, which has comparatively fewer 
data, can still produce a good predictive model. 

Fig. 4 shows that the ransomware from all sources have a PLR greater 
than 100, and an NLR of zero, which means that the predictive model 
has good positive and negative likelihood values. In addition, all sources 
have an infinite DOR value, which cannot be shown in the graph, but 
which means that the predictive model can distinguish well between 
ransomware and goodware. 

Fig. 5 shows that ransomware from the Old source has a perfect score 
of 1 for the J index, which indicates that no incorrect predictions were 
made. However, ransomware from VirusTotal and theZoo had J index 
values greater than 0.99. This means that data from just one ransomware 
from all sources was required to make a correct prediction, and 200 or 
more data were required to make an incorrect prediction. Again, the 
ransomware from the Old source had an infinite NNM value, which 
means it made no incorrect predictions. 

Fig. 6 shows that the ransomware from all sources had a constant NB 

Fig. 4. PLR, NLR, and DOR values obtained for ransomware from 
different sources. 
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for a P ranging between 10% and 99%. This decision curve shows that 
ransomware from the Old source yielded the highest benefit for analysis, 
followed closely by ransomware from VirusTotal. However, ransomware 
from theZoo showed a much lower comparative benefit for analysis. 

Fig. 7 shows that all the datasets had a PLR greater than 900, and an 
NLR less than 0.1, which means that the predictive model has good 
positive and negative likelihood values. In addition, all the datasets had 
an infinite DOR value, which cannot be shown in the graph, but which 
indicates that the predictive model can clearly distinguish between 
ransomware and goodware. 

Fig. 8 shows that all the datasets had a J index value greater than 
0.99, which means that the model required just one data from all the 
datasets to make a correct prediction, and more than 900 data to make 
an incorrect prediction. This is an optimum operating range for the 
predictive model. 

Fig. 9 shows that both the Full and PE datasets have a constant NB for 
P values ranging between 10% and 99%. The Old dataset shows a slowly 
decreasing NB before P reaches 90%. These decision curves show that 
the PE dataset had the highest benefit for analysis, with the Full dataset 
having a lower NB, followed closely by the Old dataset. However, the 
Old dataset declined quickly once P was greater than 90%, which means 
that it cannot be used for a high-probability situation. 

Fig. 10 shows the FPR and FNR values of the conventional metrics 
and the NLR of the proposed metric, which indicate good performance of 
the predictive model when their value is close to zero. The FPR and FNR 
determine the extent to which the predictive model produced incorrect 
values, and the NLR determines the likelihood of a positive condition 
being predicted as negative by the predictive model. 

Fig. 11 shows a comparison of the performances of the conventional 
and proposed metrics. The conventional metrics used include accuracy 
(Acc), TPR, TNR, precision (Prec), and the F-measure (F). The proposed 
metrics used include the PLR, NNM, DOR, J Index, and NND. The PLR, 
NNM, and DOR are shown as continuous lines with values based on the 
left vertical axis. The DOR values for all the datasets are infinite but are 
listed as zero in the graph. The PLR value for the Full dataset was also 
infinite, but is shown as zero. Other metrics with broken lines indicate 
values for the right vertical axis. Based on the lines shown in the graph, it 
is clearly difficult to represent all the proposed metrics into one graph, 
whereas the conventional metrics fit very well in one graph. This shows 
that the conventional metrics can be used for comparison purposes, but 
the proposed metrics each provide important insights as individual 
metrics. In addition, proposed metrics such as the DOR and PLR may 
have an infinite value, which will be shown as zero on a graph, which 
could lead to a misunderstanding of the true metric value. 

5. Conclusions 

The paper showed that it is possible and important to detect crypto- 
ransomware before encryption happens to prevent the important file 
from being encrypted, which could result in an irreversible 

Fig. 5. J Index, NND and NNM for ransomware from different sources.  

Fig. 6. Decision curve for ransomware from different sources.  

Fig. 7. PLR, NLR and DOR for different datasets.  

Fig. 8. J Index, NND and NNM for different dataset.  

Fig. 9. Decision curves for different datasets.  
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consequence. This fulfils the first research contribution. The develop-
ment of PEDA shows promising results in detecting crypto-ransomware 
that fulfils the second research contribution. To better evaluate LA 
performance, in this paper, we proposed six new metrics, including the 
likelihood ratio, diagnostic odds ratio, Youden’s index, number needed 
to diagnose, number needed to misdiagnose, and net benefit. Use of 
these metrics addresses the weaknesses of conventional metrics. The 
likelihood ratio and diagnostic odds ratio can indicate whether the 
predictive model is able to discriminate between ransomware and 
goodware. Youden’s index can indicate how well the predictive model 
can produce a correct prediction. The number needed to diagnose and 
the number needed to misdiagnose indicate the amount of data required 
for correct and incorrect predictions, respectively. Net benefit indicates 
how much benefit the predictive model provides by its use. This fulfils 
the third contribution of this paper. 

The results obtained based on the proposed metrics provide new 
perspectives and insight for the LA. Overall, the metrics indicated that 
the LA provided exceptionally good performance. The PLR greater than 
10, NLR less than 0.1, and DOR greater than 100 confirmed that the LA is 
able to discriminate between ransomware and goodware. The J index 
value greater than 0.99 showed that the LA has very low probability of 

the wrong prediction. The NND of 1 and NNM of more than 1,000 data 
further proved LA’s ability to provide correct predictions. The PE dataset 
had a constant high net benefit of 0.7817. Although ransomware from 
theZoo had the least net benefit of 0.0500, due to the smaller sample 
size, this did not significantly affect the overall dataset generated. 
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Interactive visualisation for interpreting diagnostic test accuracy study results. BMJ 
Evid-Based Med 2018;23(1):13–6. 
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