Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients (Review)

Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, Lai NM

Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, Lai NM.
Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients.
DOI: 10.1002/14651858.CD010747.pub2.

www.cochranelibrary.com
Table of Contents

HEADER ... 1
ABSTRACT .. 1
PLAIN LANGUAGE SUMMARY 3
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON 4
BACKGROUND ... 7
OBJECTIVES ... 8
METHODS .. 8
RESULTS .. 11
 - Figure 1. ... 12
 - Figure 2. .. 15
 - Figure 3. .. 16
ADDITIONAL SUMMARY OF FINDINGS 21
DISCUSSION .. 30
AUTHORS’ CONCLUSIONS 32
ACKNOWLEDGEMENTS 33
REFERENCES .. 33
CHARACTERISTICS OF STUDIES 44
DATA AND ANALYSES 79
 - Analysis 1.1. Comparison 1 BM-MNCs vs mPBSCs, Outcome 1 Amputation rate. 81
 - Analysis 1.2. Comparison 1 BM-MNCs vs mPBSCs, Outcome 2 Wound/ulcer healing: number of participants with healing ulcers. .. 81
 - Analysis 1.3. Comparison 1 BM-MNCs vs mPBSCs, Outcome 3 Wound/ulcer healing: change in ulcer size. 82
 - Analysis 1.4. Comparison 1 BM-MNCs vs mPBSCs, Outcome 4 Reduction in rest pain: number of participants with any reduction in rest pain score. 82
 - Analysis 1.5. Comparison 1 BM-MNCs vs mPBSCs, Outcome 5 Reduction in rest pain: rest pain score. 83
 - Analysis 1.6. Comparison 1 BM-MNCs vs mPBSCs, Outcome 6 Improvement in lower limb perfusion: number of participants with increased ABI. 83
 - Analysis 1.7. Comparison 1 BM-MNCs vs mPBSCs, Outcome 7 Improvement in lower limb perfusion: ABI score. .. 84
 - Analysis 1.8. Comparison 1 BM-MNCs vs mPBSCs, Outcome 8 Improvement in lower limb perfusion: TcO reading in mmHg. .. 84
 - Analysis 1.9. Comparison 1 BM-MNCs vs mPBSCs, Outcome 9 Improvement in ischaemic symptoms: PFWD in metres at 12 weeks. ... 85
 - Analysis 2.1. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 1 Amputation rate. 85
 - Analysis 2.2. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 2 Wound/ulcer healing: number of participants with healing ulcers. .. 86
 - Analysis 2.3. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 3 Reduction in rest pain: rest pain score. 86
 - Analysis 2.4. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 4 Improvement in lower limb perfusion: ABI score. ... 87
 - Analysis 2.5. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 5 Improvement in lower limb perfusion: TcO reading in mmHg. .. 87
 - Analysis 2.6. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 6 Improvement in ischaemic symptoms: PFWT in minutes at 24 weeks. ... 88
 - Analysis 2.7. Comparison 2 BM-MNCs vs BM-MSCs, Outcome 7 Improvement in vascularity and blood supply: number of participants with increase in numbers of collateral vessels. .. 88
 - Analysis 3.1. Comparison 3 Low cell dose vs high cell dose, Outcome 1 Amputation rate. 89
 - Analysis 4.1. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 1 Amputation rate. ... 89
 - Analysis 4.2. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 2 Wound/ulcer healing: number of participants with healing ulcer. 90
 - Analysis 4.3. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 3 Reduction in rest pain: number of participants with reduction in rest pain score. 90
 - Analysis 4.4. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 4 Improvement in lower limb perfusion: number of participants with increased ABI. ... 91

Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients (Review)
Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Analysis 4.5. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 5 Improvement in lower limb perfusion: ABI score. ... 91
Analysis 4.6. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 6 Improvement in lower limb perfusion: number of participants with improved TcO reading. 92
Analysis 4.7. Comparison 4 Route of injection: IM injection vs IA injection, Outcome 7 Improvement in vascularity and blood supply: number of participants with increase in numbers of collateral vessels. 92
APPENDICES .. 93
CONTRIBUTIONS OF AUTHORS .. 106
DECLARATIONS OF INTEREST .. 106
SOURCES OF SUPPORT .. 107
DIFFERENCES BETWEEN PROTOCOL AND REVIEW 107
Autologous cells derived from different sources and administered using different regimens for ‘no-option’ critical lower limb ischaemia patients

S Fadilah Abdul Wahid1,2, Nor Azimah Ismail3, Wan Fariza Wan Jamaludin1, Nor Asiah Muhamad3, Muhammad Khairul Azaham Abdul Hamid1, Hanafiah Harunarashid4, Nai Ming Lai5

1Cell Therapy Center, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia. 2Clinical Haematology & Stem Cell Transplantation Services, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia. 3Institute for Public Health, Ministry of Health, Kuala Lumpur, Malaysia. 4Unit of Vascular Surgery, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia. 5School of Medicine, Taylor’s University, Subang Jaya, Malaysia

Contact address: S Fadilah Abdul Wahid, Cell Therapy Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur, 56800, Malaysia. sfadilah@ppukm.ukm.edu.my

Editorial group: Cochrane Vascular Group.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the ‘no-option’ CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these ‘no-option’ patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

Objectives
To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of ‘no-option’ CLI patients.

Search methods
The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

Selection criteria
We included randomised controlled trials (RCTs) involving ‘no-option’ CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.