# PROGRESS IN DRUG DISCOVERY & BIOMEDICAL SCIENCE



Original Research Article

# Integrated Assessment of Macrophage Lipids Homeostasis Omics Data: Identification of Potential Genes and Pathways in Atherosclerosis

| Article History                                    | Wei Sheng Siew <sup>1</sup> , Yin Quan Tang <sup>2</sup> , Wei Hsum Yap <sup>2</sup> *                                                      |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>Received</b> : 19 <sup>th</sup> September 2022; | <sup>1</sup> School of Biosciences, Taylor's University, Subang Jaya 47500, Malaysia,<br><u>siewweisheng@sd.taylors.edu.my</u>              |  |  |  |
|                                                    | <sup>2</sup> School of Biosciences, Taylor's University, Subang Jaya 47500, Malaysia;                                                       |  |  |  |
| <b>Received in Revised Form:</b>                   | Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty                                                                       |  |  |  |
| 18 <sup>th</sup> October 2022;                     | of Health and Medical Sciences (FHMS), Taylor's University, Subang Jaya 47500, Malaysia YinQuan.Tang@taylors.edu.my                         |  |  |  |
| Accepted: 19 <sup>th</sup> October 2022;           | *Corresponding author: Wei Hsum Yap, School of Biosciences, Taylor's University, Subang Java 47500, Malaysia; Centre for Drug Discovery and |  |  |  |
| Available Online: 23rd                             | Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences                                                                      |  |  |  |
| October 2022                                       | (FHMS), Taylor's University, Subang Jaya 47500, Malaysia;<br>weihsum.yap@taylors.edu.my                                                     |  |  |  |

**Abstract:** Atherosclerosis is a chronic inflammatory disease characterized by the formation of lipid-rich plaques within the arterial wall. Increasing evidences have shown that cellular senescence may contribute to the progression of atherosclerosis, but the mechanism remains unclear. Hence, the present study aimed to identify potential therapeutic biomarkers for atherosclerosis by analyzing the gene expression profiles of macrophages incubated with total lipoproteins. The microarray dataset no. GSE84791 obtained from Gene Expression Omnibus (GEO) database was used for this study. In the comparison of two groups: (i) THP-1 macrophage models incubated with non-LPL hydrolysed products and (ii) LPL hydrolysed products, a total of 283 differentially expressed genes (DEGs) were identified. The Gene Ontology (GO) analysis indicated that the upregulated DEGs gene set were mainly enriched in cellular response to inflammation, stress, substance uptake and intracellular transport. Besides, upregulated DEGs were significantly enriched in PPAR signalling pathway by the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Notably, GO analysis revealed that the downregulated DEGs were mainly enriched in cellular proliferation, while the KEGG analysis showed that the gene set was significantly enriched in cell cycle process. The top 10 hub genes including KIF2C, NCAPG, BUB1, TOP2A, CENPF, TTK, CCNA2, PLK4, CDC6, and KIF11, was identified from the Protein-Protein Interaction (PPI) network, which constructed using STRING and further analysed using the Network Analyzer, MCODE and cytoHubba. The present study indicated that the downregulation of these genes which involved in the process of cell cycle may have an implication on atherosclerosis development.

**Keywords:** Atherosclerosis; Cellular Senescence; Microarray Analysis; Gene Expression; Macrophage; Lipoproteins

Atherosclerosis is regarded as a condition where passive fat deposition occurs in blood vessel walls. Lipid peroxidation, hyperlipidemia, injury response, and inflammation, cell senescence and thrombosis are evidence of pathogenesis of atherosclerosis<sup>[1]</sup>. The development of atherosclerosis lesions is mainly caused by interactions between few cell types, including the endothelial cells, smooth muscle cells, macrophages, and T lymphocytes<sup>[2]</sup>. Macrophage produces a range of cytokines and several growth-stimulating factors, leading to phenotypic changes in the blood vessels<sup>[2]</sup>. Numerous studies have demonstrated that macrophages are associated in the development of atherosclerosis<sup>[3–5]</sup>. Macrophages promote atherosclerosis by avidly taking up deposited lipoprotein and eliciting local inflammation<sup>[4]</sup>.

Recently, cell senescence has gained prominence in playing a critical role in the progression of atherosclerosis<sup>[1]</sup>. Cellular senescence is a physiological process and hallmark of aging characterized by irreversible cell cycle arrest in response to various cellular stressors [1, 6]. The accumulation of senescent cells drives aging and age-related diseases. For instance, the increased secretion of pro-inflammatory cytokines of aged monocytes were detected, which provided a direct evidence that aging/ senescence of monocytes/macrophages promotes pro-inflammatory changes that are relevant to atherosclerosis<sup>[2]</sup>. Hence, increased morbidity and mortality rates in various chronic diseases such as cardiovascular diseases, metabolic diseases, and cognitive diseases were seen in elder people<sup> $[\underline{8}]$ </sup>. Cellular senescence can be induced by various intrinsic and extrinsic factors as a stress response<sup>[9]</sup>, and cell death in atherosclerosis can happen through multiple processes (necrosis, autophagy, apoptosis). However, the association between senescence and atherosclerotic progression remains unknown. Hence, identification of senescence biomarkers associated with atherosclerosis is essential for facilitating its clinical diagnosis.

The microarray dataset no. GSE84791 from the Gene Expression Omnibus database (GEO; https://www.ncbi.nlm.nih.gov/geo/) has been utilized to reveal variations in gene expression based on analysis of human macrophages exposed to lipoprotein lipase (LPL) hydrolysis products. The present study used the microarray dataset GSE84791 to identify differentially expressed genes (DEGs) associated with atherosclerosis using comprehensive bioinformatics methods. Then, the molecular mechanisms underlying the development of arteriosclerotic macrophages were researched by enrichment and protein–protein interaction (PPI) network analyses. In summary, 283 DEGs and 10 hub genes were conclusively authenticated. This study aimed to employ bioinformatics tools for screening and identifying molecular targets in arteriosclerotic macrophages.

#### 2. Materials and Methods

#### 2.1 Microarray Data Information

The GEO database from <u>https://www.ncbi.nlm.nih.gov/geo/</u> searched with keywords, 'Atherosclerosis' and 'Macrophage'. Dataset GSE84791, which generated using GPL16686 [Affymetrix Human Gene 2.0 ST Array, transcript (gene) version] was selected for the analysis. The dataset GSE84791 (submission year, 2016; year of last update, 2019) included PMA-differentiated THP-1 macrophages incubated with non-hydrolysis products (*n*=3) and PMA-differentiated THP-1 macrophages incubated with hydrolysis products (*n*=3). Series Matrix File containing the raw data were downloaded as TXT format. The microarray probes were transformed into official gene symbols by using the annotation data provided by the platform.

## 2.2 Data Pre-Processing and Identification of DEGs

Series matrix of macrophages incubated with non-hydrolysis products and macrophages incubated with hydrolysis products were extracted. Data matrix was converted to normal scale from  $Log_2$  scale. Fold change and p-value were determined. The cut-off criteria for DEGs (Differentially Expressed Genes) was set at |logFC|>1 and p-value <0.05. Then, a volcano plot of LogFC vs -Log10(p-value) was generated.

## 2.3 Gene Ontology and KEGG Enrichment Analysis

GO analysis and KEGG pathway enrichment of the DEGs was performed using the DAVID database (https://david.ncifcrf.gov/tools.jsp) with a significance threshold of p<0.05. The enrichment of the DEGs in GO terms of the categories biological process (BP), cellular component (CC) and molecular function (MF) were determined. Besides, KEGG enriched pathways with p<0.05 regarded as significant.

## 2.4 Construction of PPI Network and Hub Genes Identification

PPI network was constructed by mapping the DEGs to the STRING database (https://string-db.org/)<sup>[10]</sup>. The interacting nodes were filtered and selected for inclusion in the PPI network according to the criteria of 'combine score >0.5'<sup>[11]</sup>. Resulting PPI network was then exported in .TSV file format and was edited in Cytoscape software<sup>[12]</sup>. Cytoscape tool Network Analyzer was used to determine the network centrality and screen for key genes in the network<sup>[13]</sup>. Molecular Complex Detection (MCODE; version 1.5.1) of Cytoscape was used to discover tightly coupled modules on the basis of topological principles. Important modules of the PPI network map were identified in the following the criteria for MCODE analysis were as follows: degree cut off, 2; MCODE scores, > 5; max depth, 100; k-score, 2;

and node score cut off, 0.2. Top 10 hub genes were identified from the module using Cytohubba (v0.1), a plug-in Cytoscape software<sup>[14]</sup>.

## 3. Results

## 3.1 Data Pre-processing and Identification of DEGs

The identified DEGs in the macrophages between non-hydrolysis products and hydrolysis products incubated cells are identified in dataset GSE84791. A total of 283 DEGs were recognised after consolidation and normalisation, followed by filtering with the cut-off criteria of |logFC|>1 and *p*-value <0.05. Among them, 143 genes were upregulated and 140 genes were downregulated as shown in Figure 1, Figure 2, and supplementary data (Supplementary Table 1 and 2).



**Figure 1.** Number of DEGs for GSE84791. The Y-axis represents the number of identified DEGs whereas the X-axis represents up- and down-regulated genes.



**Figure 2.** Volcano plot [Log2FC vs -Log10(*p*-value)] of upregulated and downregulated DEGs for GSE84791. Red colour represents upregulated genes; blue colour represents down regulated genes. The grey data-points represent genes with no significant difference in expression. DEGs cut-off criterion: |logFC|>1, *p*-value <0.05.

### 3.2 GO and KEGG Enrichment Pathway Analysis

GO and KEGG enrichment analysis were performed to identify gene sets with statistical difference between non-hydrolysis products incubated and hydrolysis products incubated macrophages. The enrichment of 143 upregulated DEGs was performed using the DAVID database (https://david.ncifcrf.gov/tools.jsp) with a significance threshold of  $p < 0.05^{[15]}$ . Results of GO and KEGG enrichment analysis was shown in Figure 3 and Figure 4, respectively. Results from Gene Ontology - Biological Process (GO-BP) analysis suggested that these enriched DEGs were mainly involved in the process of inflammation, response to cellular stress/external stimuli, and substance uptake and intracellular transport such as positive regulation of inflammatory response (GO:0050729), cellular response to heat (GO:0034605), IRE1-mediated unfolded protein response (GO:0036498), cellular response to unfolded protein (GO:0034620), cellular response to mechanical stimulus (GO:0071260), negative regulation of transcription from RNA polymerase II promoter in response to stress (GO:0097201), and long-chain fatty acid transport (GO:0015909). The most gene set of DEGs in the CC of GO was enriched in nucleolus (GO:0005730). Results from Gene Ontology – Molecular Function (GO-MF) analysis suggested that DEGs also enriched mainly in lipid binding and transfer such as phospholipid binding (GO:0005543) and organic anion transmembrane transporter activity (GO:0008514). Moreover, the enriched KEGG pathways mainly were PPAR signaling pathway (hsa03320), phagosome (hsa04145), and protein processing in endoplasmic reticulum (hsa04141), which indicated that the uptake of hydrolysis products by the cells has induced inflammatory response.



Figure 3. GO enrichment analysis of up-regulated genes of macrophage samples.



# **KEGG Classification**

Figure 4. KEGG enrichment analysis of up-regulated genes of macrophage samples.

The analysis was repeated with the downregulated DEGs, and the results of GO and KEGG enrichment analysis were shown in Figure 5 and Figure 6, respectively. The GO-BP analysis of DEGs was shown to enrich mainly in process of cellular proliferation such as cell division (GO:0051301), DNA replication (GO:0006260), mitotic spindle organization (GO:0007052), mitotic cell cycle (GO:0000278), cell proliferation (GO:0008283), DNA replication initiation (GO:0006270). In addition, the KEGG pathways analysis of the enriched DEGs were involved in cell cycle (hsa04110) and DNA replication (hsa03030).



Figure 5. GO enrichment analysis of down-regulated genes of macrophage samples.



## **KEGG Classification**



#### 3.3 PPI Construction and Hub Genes Identification

The PPI network of the DEGs was constructed using the STRING database and Cytoscape software with 151 nodes and 1278 edges identified. The two most significant modules, Module A (score = 39.7) and Module B (score = 16.9) in the PPI network were identified using MCODE (Figure 7). Module A consisted 43 nodes and 834 edges, whereas Module B consisted 19 nodes and 152 edges. The clustered module networks of the two modules were displayed in Figure 8. Top 10 hub genes were identified from the most significant module (Module A), and listed in Table 1.

| Gene  | Gene description                                | Degree | LogFC |
|-------|-------------------------------------------------|--------|-------|
| KIF2C | kinesin family member 2C                        | 42     | -1.15 |
| NCAPG | non-SMC condensin I complex subunit G           | 40     | -1.49 |
| BUB1  | BUB1 mitotic checkpoint serine/threonine kinase | 42     | -1.24 |
| TOP2A | DNA topoisomerase II alpha                      | 42     | -1.38 |
| CENPF | centromere protein F                            | 42     | -1.12 |
| TTK   | TTK protein kinase                              | 42     | -1.16 |
| CCNA2 | cyclin A2                                       | 42     | -1.48 |
| PLK4  | polo like kinase 4                              | 42     | -1.07 |
| CDC6  | cell division cycle 6                           | 42     | -1.03 |
| KIF11 | kinesin family member 11                        | 42     | -1.14 |

Table 1. Top 10 hub genes identified by Cytohubba.





**Figure 7.** Protein–protein interaction network of the enriched DEGs. The different colours indicate the different level of degree centralities. A and B denotes the two most significant modules of the PPI network using MCODE.



Figure 8. Cluster network of Module A (A) and Module B (B).

## 4. Discussion

An increasing number of studies have revealed that cellular senescence also contributed to the development of atherosclerosis. For instance, senescent vascular endothelial cells which exhibited senescence-associated phenotypes were detected in atherosclerotic lesions<sup>[16]</sup>, and associated with increased atherosclerosis and formation of necrotic core<sup>[17]</sup>. In addition, localized expression of senescence markers which include *p16INK4a* was detected within CD68<sup>+</sup> macrophages residing in atherosclerotic lesions<sup>[18]</sup>. Since macrophages take part in all stages of atherosclerosis, it is essential to identify the relationship between the senescence of macrophages and atherogenesis. It is plausible that senescent foamy macrophages drive lesion growth by increasing the expression of inflammatory cytokines and monocyte chemotactic factors<sup>[19]</sup>, however, the actual mechanisms has not been fully elucidated.

In the present study, various bioinformatic tools were used to analyse critical genes and pathways between macrophages that were incubated with non-LPL hydrolysed products and LPL hydrolysed products. A total of 283 DEGs were identified from the dataset where 143 DEGs were upregulated and 140 DEGs were downregulated. Through the GO and KEGG enrichment analysis of the upregulated DEGs, a total of 12 BP, 3 CC, 8 MF, and 4 KEGG pathways function were enriched (Figure 3 and Figure 4). The results from GO-BP analysis demonstrated that the upregulated DEGs mainly enriched in the process of inflammation, response to cellular stress/external stimuli, and substance uptake and intracellular transport. The fatty acid-inflammation interactions was described in detail elsewhere<sup>[20,21]</sup>. For instance, the saturated fatty acids (SFAs) — an essential structural component of endotoxins, contribute to the proinflammatory activity of lipopolysaccharide (LPS)<sup>[21]</sup>. Besides, SFAs also directly involved in the stimulation of inflammatory genes via the TLR4 signaling pathway<sup>[22]</sup>. Most gene set of DEGs in Gene Ontology – Cellular Component (GO-CC) analysis was enriched in nucleolus (GO:0005730). The nucleolus is a membraneless compartment located within the nucleus of eukaryotic cells which involved in various aspects of cell physiology including genome organization, stress responses, senescence and lifespan<sup>[23]</sup>. Stress induces alteration of nucleolar morphology, and persistent stress causes the delocalisation of nucleolar proteins (e.g. nucleolin, nucleostamin, and nucleophosmin) that involved in the regulation of cell cycle and proliferation<sup>[24]</sup>. GO-MF analysis showed that the DEGs were mostly enriched in protein binding (GO:0042802), suggesting that the protein-protein interaction of two or more proteins played a crucial role in the inflammation (e.g. MCEMP1), lipid transport and metabolism (e.g. ACADVL, CPT1A, and ANXA1), and stress responses (e.g. TNFSF14 and ATF3). Upregulation of MCEMP1 was associated to increased inflammation response by increasing expression of proinflammatory cytokines such as interleukin 6 (IL-6), IL-1 $\beta$ , IL-10, and tumor necrosis factor- $\alpha$  (TNF- $\alpha$ )<sup>[25]</sup>. Acyl-CoA Dehydrogenase Very Long Chain (ACADVL) and Carnitine Palmitoyltransferase 1A (CPT1A) gene both involved in lipid metabolism via the fatty acid beta-oxidation pathway<sup>[26,27]</sup>, whereas ANAXA1 take part in mediating cholesterol transportation<sup>[28]</sup>. TNF Superfamily Member 14 (TNFSF14) gene involved in the apoptosis process via the LIGHT-LT $\beta$ R signalling pathway<sup>[29]</sup>. On the other hand, Activating Transcription Factor 3 (*ATF3*) gene plays a critical role in reconstructing chromatin accessibility to promote cellular senescence<sup>[30]</sup>. Moreover, the KEGG analysis demonstrated that the DEGs were mainly</sup> enriched in PPAR signaling pathway (hsa03320), where the key transcriptional factors like the PPAR regulates CD36 and take part in the cholesterol internalisation<sup>[31]</sup>.

The GO-BP analysis of down-regulated DEGs was shown to enrich mainly in process of cell division, which included 18 DEGs. Cell division is the process of division and partitioning of cell components for the purpose of forming more cells. When cells were damaged from extrinsic stimuli such as oxidative stress, the process of undergoing cell division stopped and triggered the cellular senescence process. Senescence is defined as stable growth arrest accompanied by characteristics of phenotypic alterations including chromatin remodelling, increased autophagy and the release of a complex proinflammatory secretome<sup>[32]</sup>. The growth arrest is induced primarily by the activation of p16INK4a/Rb and p53/p21 signaling pathways<sup>[8]</sup>. Several studies have linked senescence to atherosclerosis<sup>[33–35]</sup>. A study from Childs *et al.*<sup>[19]</sup> showed that foam cell macrophages with senescence markers

accumulate and initiate the development of atherosclerosis by inducing expression of atherogenic cytokines and chemokines.

Similar findings were found for the KEGG pathways analysis, where the DEGs were mainly enriched in cell cycle (hsa04110) and DNA replication (hsa03030) pathways. A total of 10 genes were found enriched in cell cycle pathway (hsa04110) namely *CCNA2*, *CDC20*, *CCNE2*, *CDK1*, *MCM3*, *MCM4*, *TTK*, *CDC6*, *MCM6*, and *BUB1*. Among all, the cyclin E2 (*CCNE2*) and cyclin A2 (*CCNA2*) interacts with CDK kinases (e.g. CDK2) and take part in the Rb/E2F signaling pathway. The reduced expression of the two cyclin proteins link to arrest of cell proliferation/senescence<sup>[36]</sup>. Alternatively, the p16 of the INK4 family also known for its role in the maintenance of cellular senescence via the Rb/E2F signaling pathway<sup>[37]</sup>. Studies have shown that the increased expression of *p16INK4a* is associated to increased risk of cardiovascular disease (CVD) and atherosclerosis progression<sup>[18,38]</sup>. Hence, p16 expression in senescence macrophage is of great interest for researcher to study the effect of cellular senescence on atherosclerosis.

In the present study, 10 hub genes were identified by cytoHubba namely KIF2C, NCAPG, BUB1, TOP2A, CENPF, TTK, CCNA2, PLK4, CDC6, and KIF11 (Table 1). The kinesin family member 2C (KIF2C) is a member of the kinesin superfamily of microtubule motor proteins that take part in the process of normal chromosome movement and segregation, and acting as a key regulator of mitotic spindle assembly<sup>[39]</sup>. KIF2C gene has been reported to be involved in the cellular senescence through a p53-dependent signaling pathway<sup>[39]</sup>. Besides, non-SMC Condensin I Complex Subunit G (NCAPG) gene responsible for encoding a subunit of the condensin complex, which take part in the condensation and stabilization of chromosomes during mitosis and meiosis<sup>[40]</sup>. The BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) gene encodes a serine/threonine-protein kinase that promotes chromosome alignment<sup>[41]</sup>. Downregulation of *BUB1* gene is associated to replicative senescence in cells<sup>[42]</sup>. The DNA Topoisomerase II Alpha (TOP2A) gene is one of the important regulators of the cell cycle and a useful indicator for cellular proliferation, where its function includes regulating DNA structure, chromosome segregation, and cell cycle progression<sup>[43]</sup>. Centromere Protein F (CENPF) gene is a nuclear protein gene that involved in cell cycle by associating with the centromere-kinetochore complex and taking part in the G2 phase of interphase<sup>[44]</sup>. Knockdown/silencing of the CENPF gene was found to reduce cell proliferation in cancer cells, which has the potential to be utilised as a therapeutic cancer targets  $[\frac{44,45}{2}]$ . Subsequently, TTK protein kinase which encoded by the TTK gene, has the ability to phosphorylate tyrosine, serine and threonine, and this kinase play an essential role in chromosome alignment and segregation at the centromere for centrosome duplication<sup>[46]</sup>. *CCNA2* gene that encodes one of the highly conserved cyclin family - Cyclin A2, that interacts with cyclin-dependent kinase 2 (CDK2) and cyclin dependent protein kinase 1 (CDK1) to promote the transition of G1/S and G2/M phases<sup>[47]</sup>. The Polo Like Kinase 4 encoded by *PLK4* gene responsible for the centriole duplication<sup>[48]</sup>. The inhibition of PLK4 was found to cause cell cycle arrest and senescence<sup>[48]</sup>. The Cell Division Cycle 6 (*CDC6*) protein as one of the key component of the pre-replication complex (pre-RC) is crucial for the initiation of DNA replication and the maintenance of cell cycle<sup>[49]</sup>. The last of the top 10 genes is the Kinesin Family Member 11 (*KIF11*) which encodes a motor protein take part in events such chromosome positioning, centrosome separation and the establishment of bipolar spindle during cell mitosis<sup>[50,51]</sup>. Therefore, the 10 hub genes identified herein are all associated with the cell cycle.

In the present study, the overall design of dataset GSE84791 focused on the effect of lipoprotein lipase (LPL) hydrolyzed products on macrophages<sup>[52]</sup>, and the involvement of macrophage-secreted LPL in the pathogenesis of atherosclerosis<sup>[53-55]</sup>. Briefly, LPL hydrolysis products liberated from lipoproteins causes accumulation of cholesteryl esters in macrophages and impairs its cholesterol efflux ability. Studies have demonstrated that atherosclerosis is associated with the cells senescence in macrophages<sup>[19]</sup>, vascular smooth</sup> muscle cells<sup>[56,57]</sup>, and endothelial cells<sup>[16]</sup>. Interestingly, selective removal of p16INK4apositive senescent cells appeared to prevent atherosclerosis progression by stabilizing plaques and reducing plaque inflammation<sup>[19]</sup>, highlighting the intertwining relationship between atherosclerosis and cellular senescence. The findings from this study showed that the downregulated hub genes were all involved in the process of cell cycle. Cell cycle arrest/cellular are mainly regulated by the two well-known pathways - p16INK4a/Rb and p53/p21 signalling pathways. Among the two, the p53/p21 signaling pathway appears to play a key role in initiating cellular senescence which subsequently contributes to atherosclerosis, whereas the p16INK4a/Rb signalling pathway seems to have a central role in the maintenance of senescence<sup>[58]</sup>. It was shown that the expression of p53 has a negative correlation with the</sup> p16INK4a activity in senescent cells, indicating that the p53 activity dominated the early phase of senescence (reversible phase) while p16/Rb pathway promoted senescence in the late phase (irreversible phase)<sup>[59,60]</sup>. Hence, p16 expression in senescence macrophage is of great interest for researcher to study the effect of cellular senescence on atherosclerosis.

## **5.** Conclusions

In this study, 283 DEGs were identified which comprised of 143 upregulated DEGs and 140 downregulated DEGs. Upregulated DEGs were found mainly involved in responses such as inflammation, stress, and lipid uptake, whereas downregulated DEGs were involved in cell cycle/apoptosis. Furthermore, the top 10 hub genes identified: *KIF2C*, *NCAPG*, *BUB1*, *TOP2A*, *CENPF*, *TTK*, *CCNA2*, *PLK4*, *CDC6*, and *KIF11* are associated to the cell cycle pathway.

The identified cell cycle-related hub genes is in line with the concept that senescent macrophages could be the contributor in the progression of atherosclerosis. Besides, it also suggests that cellular senescence might be one of the feature of macrophages transformation into foam cells. However, the potential mechanism unravelled from the bioinformatic analysis still require further studies and validation. Nevertheless, the findings may provide insights for the development of diagnostic and therapeutic biomarkers for atherosclerosis.

Author Contributions: Wei Sheng Siew, Yin Quan Tang, and Wei Hsum Yap researched literature and conceptualized the study. Wei Sheng Siew produced first original draft of the manuscript. Wei Sheng Siew, Yin Quan Tang, and Wei Hsum Yap took part in reviewing and editing the manuscript, while Wei Sheng Siew performed data analysis, result interpretation, and manuscript revision. Yin Quan Tang, and Wei Hsum Yap oversee the data analysis, interpretation of the results, and provide constructive comments for the improvement of the manuscript. All authors have read and agreed to the final version of the manuscript.

**Funding:** This research was funded by the Malaysian Ministry of Education Fundamental Research Grant Scheme, grant number FRGS/1/2019/SKK08/TAYLOR/02/2.

Acknowledgements: The authors are grateful to Chee Kei Kong and Hou Dong Tan for proofreading and providing technical advice, respectively.

Conflict of Interest: The authors declare no conflict of interest.

**Data availability statement:** The dataset used during the present study is available from the NCBI GEO repository at <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84791</u>, The reference number to access this data are given in the manuscript.

#### References

- 1. Wu CM, Zheng L, Wang Q, *et al*. The emerging role of cell senescence in atherosclerosis Clin Chem Lab Med 2021; 59: 27–38. DOI: doi:10.1515/cclm-2020-0601.
- 2. Huang HM, Jiang X, Hao ML, *et al.* Identification of biomarkers in macrophages of atherosclerosis by microarray analysis. Lipids Health Dis 2019; 18: 107. DOI: 10.1186/s12944-019-1056-x.
- Higashi Y, Sukhanov S, Shai SY, *et al.* Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice. Circulation 2016; 133: 2263–2278. DOI: 10.1161/CIRCULATIONAHA.116.021805.
- 4. Wang XQ, Liu ZH, Xue L, *et al.* C1q/TNF-related protein 1 links macrophage lipid metabolism to inflammation and atherosclerosis. Atherosclerosis 2016; 250: 38–45. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.04.024.

- 5. Chen H-H, Keyhanian K, Zhou X, *et al.* IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circ Res 2015; 117: 671–683. DOI: doi:10.1161/CIRCRESAHA.114.305777.
- 6. López-Otín C, Blasco MA, Partridge L, *et al*. The hallmarks of aging. Cell 2013; 153: 1194–1217. DOI: 10.1016/j.cell.2013.05.039.
- Calvert PA, Liew TV, Gorenne I, *et al.* Leukocyte Telomere Length Is Associated With High-Risk Plaques on Virtual Histology Intravascular Ultrasound and Increased Proinflammatory Activity. Arterioscler Thromb Vasc Biol 2011; 31: 2157–2164. DOI: doi:10.1161/ATVBAHA.111.229237.
- 8. McHugh D and Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol 2018; 217: 65–77. DOI: 10.1083/jcb.201708092.
- 9. Herranz N and Gil J. Mechanisms and functions of cellular senescence. J Clin Investig 2018; 128: 1238-1246. DOI: 10.1172/JCI95148.
- Szklarczyk D, Gable AL, Nastou KC, *et al.* The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2020; 49: D605–D612. DOI: 10.1093/nar/gkaa1074.
- 11. Franceschini A, Szklarczyk D, Frankild S, *et al.* STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2012; 41: D808–D815. DOI: 10.1093/nar/gks1094.
- Shannon P, Markiel A, Ozier O, *et al.* Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504. DOI: 10.1101/gr.1239303.
- 13. Assenov Y, Ramírez F, Schelhorn SE, *et al.* Computing topological parameters of biological networks. Bioinformatics 2007; 24: 282–284. DOI: 10.1093/bioinformatics/btm554.
- 14. Chin CH, Chen SH, Wu HH, *et al.* cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8: S11. DOI: 10.1186/1752-0509-8-S4-S11.
- Huang DW, Sherman BT, Tan Q, *et al.* DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169– W175. DOI: 10.1093/nar/gkm415.
- 16. Minamino T, Miyauchi H, Yoshida T, *et al.* Endothelial Cell Senescence in Human Atherosclerosis. Circulation 2002; 105: 1541–1544. DOI: doi:10.1161/01.CIR.0000013836.85741.17.
- 17. Wang J, Uryga AK, Reinhold J, *et al.* Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation 2015; 132: 1909–1919. DOI: doi:10.1161/CIRCULATIONAHA.115.016457.
- Holdt LM, Sass K, G\u00e4bel G, *et al.* Expression of Chr9p21 genes CDKN2B (p15INK4b), CDKN2A (p16INK4a, p14ARF) and MTAP in human atherosclerotic plaque. Atherosclerosis 2011; 214: 264–270. DOI: 10.1016/j.atherosclerosis.2010.06.029.
- 19. Childs BG, Baker DJ, Wijshake T, *et al.* Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354: 472–477. DOI: 10.1126/science.aaf6659.
- 20. Chowdhury R, Warnakula S, Kunutsor S, *et al.* Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk. Ann Intern Med 2014; 160: 398-406. DOI: 10.7326/M13-1788.
- 21. Fritsche KL. The Science of Fatty Acids and Inflammation. Adv Nutr 2015; 6: 293S-301S. DOI: 10.3945/an.114.006940.

- 22. Lee JY, Sohn KH, Rhee SH, *et al.* Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4 \*. J Biol Chem 2001; 276: 16683–16689. DOI: 10.1074/jbc.M011695200.
- 23. Stochaj U and Weber SC. Nucleolar Organization and Functions in Health and Disease. Cells 2020; 9: 526. DOI: 10.3390/cells9030526.
- 24. Hariharan N and Sussman MA. Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 2014; 1842: 798–801. DOI: 10.1016/j.bbadis.2013.09.016.
- 25. Xie W, Chen L, Chen L, *et al.* Silencing of long non-coding RNA MALAT1 suppresses inflammation in septic mice: role of microRNA-23a in the down-regulation of MCEMP1 expression. J Inflamm Res 2020; 69: 179–190. DOI: 10.1007/s00011-019-01306-z.
- 26. Irvin MR, Aslibekyan S, Hidalgo B, *et al.* CPT1A: the future of heart disease detection and personalized medicine? Clin Lipidol 2014; 9: 9–12. DOI: 10.2217/clp.13.75.
- 27. Wallner S, Grandl M, Konovalova T, *et al.* Monocyte to macrophage differentiation goes along with modulation of the plasmalogen pattern through transcriptional regulation. PLoS One 2014; 9: e94102–e94102. DOI: 10.1371/journal.pone.0094102.
- 28. Shen X, Zhang S, Guo Z, *et al*. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26: 84. DOI: 10.1186/s10020-020-00213-y.
- 29. Granger SW and Rickert S. LIGHT–HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev 2003; 14: 289–296. DOI: <u>https://doi.org/10.1016/S1359-6101(03)00031-5</u>.
- 30. Zhang C, Zhang X, Huang L, *et al.* ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 2021; 20: e13315–e13315. DOI: 10.1111/acel.13315.
- 31. Chistiakov DA, Bobryshev YV and Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2016; 20: 17–28. DOI: 10.1111/jcmm.12689.
- 32. Salama R, Sadaie M, Hoare M, *et al.* Cellular senescence and its effector programs. Genes Dev 2014; 28: 99–114. DOI: 10.1101/gad.235184.113.
- 33. Grootaert MOJ, Moulis M, Roth L, *et al.* Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2018; 114: 622–634. DOI: 10.1093/cvr/cvy007.
- Shah A, Gray K, Figg N, *et al.* Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis. Circulation 2018; 138: 1446–1462. DOI: doi:10.1161/CIRCULATIONAHA.117.033249.
- 35. Visel A, Zhu Y, May D, *et al.* Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 2010; 464: 409–412. DOI: 10.1038/nature08801.
- Doan P, Musa A, Candeias NR, *et al.* Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. Front Pharmacol 2019; 10. Original Research DOI: 10.3389/fphar.2019.00330.
- 37. Buj R and Aird KM. p16: cycling off the beaten path. Mol Cell Oncol 2019; 6: e1677140-e1677140. DOI: 10.1080/23723556.2019.1677140.
- 38. Hannou SA, Wouters K, Paumelle R, *et al.* Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab 2015; 26: 176–184. DOI: 10.1016/j.tem.2015.01.008.

- Gwon MR, Cho JH and Kim JR. Mitotic centromere-associated kinase (MCAK/Kif2C) regulates cellular senescence in human primary cells through a p53-dependent pathway. FEBS Lett 2012; 586: 4148–4156. DOI: <u>https://doi.org/10.1016/j.febslet.2012.10.012</u>.
- 40. Xiao C, Gong J, Jie Y, *et al.* NCAPG Is a Promising Therapeutic Target Across Different Tumor Types. Front Pharmacol 2020; 11. Original Research DOI: 10.3389/fphar.2020.00387.
- 41. Kim T and Gartner A. Bub1 kinase in the regulation of mitosis. Anim Cells Syst 2021; 25: 1–10. DOI: 10.1080/19768354.2021.1884599.
- 42. Andriani GA, Almeida VP, Faggioli F, *et al.* Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep 2016; 6: 35218. DOI: 10.1038/srep35218.
- Kalfusova A, Krsková L, Kalinova M, *et al.* Gastrointestinal stromal tumors Quantitative detection of the Ki-67, TPX2, TOP2A, and hTERT telomerase subunit mRNA levels to determine proliferation activity and a potential for aggressive biological behavior. Neoplasma 2016; 63 DOI: 10.4149/320\_150714N390.
- 44. Chen H, Wang X, Wu F, *et al.* Centromere protein F is identified as a novel therapeutic target by genomics profile and contributing to the progression of pancreatic cancer. Genomics 2021; 113: 1087–1095. DOI: <u>https://doi.org/10.1016/j.ygeno.2020.10.039</u>.
- Hexiao T, Yuquan B, Lecai X, *et al.* Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY) 2021; 13: 2604–2625. DOI: 10.18632/aging.202303.
- 46. Chen S, Wang J, Wang L, *et al.* Silencing TTK expression inhibits the proliferation and progression of prostate cancer. Exp Cell Res 2019; 385: 111669. DOI: <u>https://doi.org/10.1016/j.yexcr.2019.111669</u>.
- 47. Kim SS, Alves MJ, Gygli P, *et al.* Identification of Novel Cyclin A2 Binding Site and Nanomolar Inhibitors of Cyclin A2-CDK2 Complex. Curr Comput-Aided Drug Des 2021; 17: 57–68. DOI: 10.2174/1573409916666191231113055.
- 48. Singh CK, Denu RA, Nihal M, *et al.* PLK4 is upregulated in prostate cancer and its inhibition reduces centrosome amplification and causes senescence. The Prostate; 82: 957–969. DOI: <u>https://doi.org/10.1002/pros.24342</u>.
- 49. Youn Y, Lee JC, Kim J, *et al.* Cdc6 disruption leads to centrosome abnormalities and chromosome instability in pancreatic cancer cells. Sci Rep 2020; 10: 16518. DOI: 10.1038/s41598-020-73474-6.
- 50. Hu ZD, Jiang Y, Sun HM, *et al.* KIF11 Promotes Proliferation of Hepatocellular Carcinoma among Patients with Liver Cancers. Biomed Res Int 2021; 2021: 2676745–2676745. DOI: 10.1155/2021/2676745.
- 51. Wei D, Rui B, Qingquan F, *et al.* KIF11 promotes cell proliferation via ERBB2/PI3K/AKT signaling pathway in gallbladder cancer. Int J Biol Sci 2021; 17: 514–526. DOI: 10.7150/ijbs.54074.
- 52. Thyagarajan N, Marshall JD, Pickett AT, *et al.* Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase. Lipids 2017; 52: 189–205. DOI: 10.1007/s11745-017-4238-1.
- 53. He P-P, Jiang T, OuYang X-P, *et al.* Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480: 126–137. DOI: <u>https://doi.org/10.1016/j.cca.2018.02.006</u>.
- 54. Li Y, He PP, Zhang DW, *et al.* Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis 2014; 237: 597–608. DOI: 10.1016/j.atherosclerosis.2014.10.016.

- 55. Takahashi M, Yagyu H, Tazoe F, *et al.* Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J Lipid Res 2013; 54: 1124–1134. DOI: 10.1194/jlr.M035568.
- 56. Gardner SE, Humphry M, Bennett MR, *et al.* Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α-Dependent Senescence-Associated Secretory Phenotype. Arterioscler Thromb Vasc Biol 2015; 35: 1963–1974. DOI: doi:10.1161/ATVBAHA.115.305896.
- 57. Wang J, Uryga AK and Rienhold J. Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. J Vasc Surg 2016; 63: 1662. DOI: 10.1016/j.jvs.2016.04.015.
- 58. Mijit M, Caracciolo V, Melillo A, *et al.* Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020; 10: 420. DOI: 10.3390/biom10030420.
- 59. Beauséjour CM, Krtolica A, Galimi F, *et al.* Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003; 22: 4212–4222. DOI: 10.1093/emboj/cdg417.
- 60. Helmbold H, Kömm N, Deppert W, *et al.* Rb2/p130 is the dominating pocket protein in the p53–p21 DNA damage response pathway leading to senescence. Oncogene 2009; 28: 3456–3467. DOI: 10.1038/onc.2009.222.



Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

# **Supplementary Data**

| Gene symbol      | Gene description                                                                  | LogFC | p-value |
|------------------|-----------------------------------------------------------------------------------|-------|---------|
| CD52             | CD52 molecule                                                                     | 1.24  | 0.000   |
| RNU11 TAF12-DT   | RNA, U11 small nuclear   TAF12 divergent transcript                               | 1.99  | 0.000   |
| DYNLT5           | dynein light chain Tctex-type family member 5                                     | 1.10  | 0.005   |
| IL24             | interleukin 24                                                                    | 1.76  | 0.000   |
| ATF3             | activating transcription factor 3                                                 | 1.56  | 0.000   |
| SPOCD1           | SPOC domain containing 1                                                          | 1.15  | 0.000   |
| SNORA55          | small nucleolar RNA, H/ACA box 55                                                 | 1.08  | 0.000   |
| SNORA80E         | small nucleolar RNA, H/ACA box 80E                                                | 2.65  | 0.000   |
| SCARNA4          | small Cajal body-specific RNA 4                                                   | 2.04  | 0.000   |
| SCARNA3 MIR1843  | small Cajal body-specific RNA 3 microRNA 1843                                     | 1.95  | 0.000   |
| SNORA36B MIR664A | small nucleolar RNA, H/ACA box 36B microRNA 664a                                  | 1.65  | 0.020   |
| SNORA14B         | small nucleolar RNA, H/ACA box 14B                                                | 2.67  | 0.000   |
| OLAH             | oleoyl-ACP hydrolase                                                              | 2.28  | 0.010   |
| AGAP11           | ArfGAP with GTPase domain, ankyrin repeat and PH domain 11                        | 1.34  | 0.003   |
| BAG3             | BAG cochaperone 3                                                                 | 1.23  | 0.014   |
| ANKRD1           | ankyrin repeat domain 1                                                           | 1.13  | 0.036   |
| SNORA3B          | small nucleolar RNA, H/ACA box 3B                                                 | 1.54  | 0.000   |
| NUCB2            | nucleobindin 2                                                                    | 1.10  | 0.014   |
| SNORA57          | small nucleolar RNA, H/ACA box 57                                                 | 1.44  | 0.000   |
| NEAT1            | nuclear paraspeckle assembly transcript 1                                         | 1.43  | 0.000   |
| CTTN             | cortactin                                                                         | 1.07  | 0.005   |
| SLCO2B1          | solute carrier organic anion transporter family member<br>2B1                     | 1.09  | 0.006   |
| VWA5A            | von Willebrand factor A domain containing 5A                                      | 1.21  | 0.004   |
| SNORA54          | small nucleolar RNA, H/ACA box 54                                                 | 1.83  | 0.000   |
| CPT1A            | carnitine palmitoyltransferase 1A                                                 | 1.59  | 0.000   |
| SNORD14E         | small nucleolar RNA, C/D box 14E                                                  | 1.42  | 0.000   |
| SCARNA10         | small Cajal body-specific RNA 10                                                  | 1.62  | 0.001   |
| HSP90B1 MIR3652  | heat shock protein 90 beta family member 1   microRNA 3652                        | 1.42  | 0.000   |
| SCARNA11         | small Cajal body-specific RNA 11                                                  | 1.22  | 0.002   |
| MIR1291 SNORA2C  | microRNA 1291 small nucleolar RNA, H/ACA box 2C                                   | 1.20  | 0.001   |
| SNORA2A          | small nucleolar RNA, H/ACA box 2A                                                 | 2.26  | 0.000   |
| SGCG             | sarcoglycan gamma                                                                 | 1.21  | 0.003   |
| GJB2             | gap junction protein beta 2                                                       | 1.33  | 0.001   |
| TPT1 SNORA31B    | tumor protein, translationally-controlled 1 small<br>nucleolar RNA, H/ACA box 31B | 1.21  | 0.000   |
| ANG   RNASE4     | angiogenin   ribonuclease A family member 4                                       | 1.00  | 0.001   |

**Supplementary Table 1**. 143 upregulated DEGs between non-hydrolysis products and hydrolysis products incubated macrophages.

| SNORA28                                                              | small nucleolar RNA, H/ACA box 28                                                                                                                                                                                                       | 1.02 | 0.002 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| HIF1A-AS3                                                            | HIF1A antisense RNA 3                                                                                                                                                                                                                   | 1.53 | 0.004 |
| GOLGA8H GOLGA8T GOLGA8K GOLGA8N GOLGA8S GOLGA8IP                     | golgin A8 family member H golgin A8 family member<br>T golgin A8 family member K golgin A8 family member<br>N golgin A8 family member S golgin A8 family member I,<br>pseudogene                                                        | 1.14 | 0.013 |
| GOLGA8M GOLGA8N GOLGA8H GOLGA8K GOLGA8T GOLGA8J GOLGA8IP G<br>OLGA8S | golgin A8 family member M golgin A8 family member<br>N golgin A8 family member H golgin A8 family member<br>K golgin A8 family member T golgin A8 family member<br>J golgin A8 family member I, pseudogene golgin A8<br>family member S | 1.08 | 0.004 |
| SNORA10                                                              | small nucleolar RNA, H/ACA box 10                                                                                                                                                                                                       | 1.54 | 0.001 |
| SNORA46                                                              | small nucleolar RNA, H/ACA box 46                                                                                                                                                                                                       | 1.87 | 0.002 |
| ACADVL                                                               | acyl-CoA dehydrogenase very long chain                                                                                                                                                                                                  | 1.00 | 0.000 |
| SNORD3B-1 SNORD3D SNORD3B-2 SNORD3C SNORD3A                          | small nucleolar RNA, C/D box 3B-1 small nucleolar RNA,<br>C/D box 3D small nucleolar RNA, C/D box 3B-2 small<br>nucleolar RNA, C/D box 3C small nucleolar RNA, C/D box<br>3A                                                            | 1.23 | 0.000 |
| SNORD3B-2 SNORD3B-1 SNORD3C SNORD3A SNORD3D                          | small nucleolar RNA, C/D box 3B-2 small nucleolar RNA,<br>C/D box 3B-1 small nucleolar RNA, C/D box 3C small<br>nucleolar RNA, C/D box 3A small nucleolar RNA, C/D box<br>3D                                                            | 1.23 | 0.000 |
| SNORD104                                                             | small nucleolar RNA, C/D box 104                                                                                                                                                                                                        | 1.71 | 0.000 |
| SNORA50C                                                             | small nucleolar RNA, H/ACA box 50C                                                                                                                                                                                                      | 2.38 | 0.000 |
| SNORA38B                                                             | small nucleolar RNA, H/ACA box 38B                                                                                                                                                                                                      | 1.76 | 0.001 |
| SNORD1B                                                              | small nucleolar RNA, C/D box 1B                                                                                                                                                                                                         | 1.28 | 0.008 |
| SNORD3A SNORD3B-2 SNORD3B-1 SNORD3D SNORD3C                          | small nucleolar RNA, C/D box 3A small nucleolar RNA,<br>C/D box 3B-2 small nucleolar RNA, C/D box 3B-1 small<br>nucleolar RNA, C/D box 3D small nucleolar RNA, C/D box<br>3C                                                            | 1.63 | 0.000 |
| SCARNA20                                                             | small Cajal body-specific RNA 20                                                                                                                                                                                                        | 1.65 | 0.001 |
| WIPI1                                                                | WD repeat domain, phosphoinositide interacting 1                                                                                                                                                                                        | 1.34 | 0.007 |
| ST6GALNAC2                                                           | ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 2                                                                                                                                                                               | 1.42 | 0.001 |
| SEC11C                                                               | SEC11 homolog C, signal peptidase complex subunit                                                                                                                                                                                       | 1.25 | 0.000 |
| SNORA37                                                              | small nucleolar RNA, H/ACA box 37                                                                                                                                                                                                       | 1.50 | 0.000 |
| MCEMP1                                                               | mast cell expressed membrane protein 1                                                                                                                                                                                                  | 1.01 | 0.003 |
| GDF15                                                                | growth differentiation factor 15                                                                                                                                                                                                        | 1.02 | 0.003 |
| SEMA6B                                                               | semaphorin 6B                                                                                                                                                                                                                           | 1.27 | 0.001 |
| TNFSF14                                                              | TNF superfamily member 14                                                                                                                                                                                                               | 1.72 | 0.009 |
| DNAJB1                                                               | DnaJ heat shock protein family (Hsp40) member B1                                                                                                                                                                                        | 1.03 | 0.002 |
| SNORD88A                                                             | small nucleolar RNA, C/D box 88A                                                                                                                                                                                                        | 1.20 | 0.000 |
| ATP6V1C2                                                             | ATPase H+ transporting V1 subunit C2                                                                                                                                                                                                    | 1.46 | 0.002 |
| SNORD92                                                              | small nucleolar RNA, C/D box 92                                                                                                                                                                                                         | 2.00 | 0.000 |
| SNORA10B SNORA10                                                     | small nucleolar RNA, H/ACA box 10B small nucleolar RNA,<br>H/ACA box 10                                                                                                                                                                 | 1.26 | 0.000 |
| DYSF                                                                 | dysferlin                                                                                                                                                                                                                               | 1.51 | 0.000 |
| SNORD11B                                                             | small nucleolar RNA, C/D box 11B                                                                                                                                                                                                        | 1.07 | 0.002 |
| CYP27A1                                                              | cytochrome P450 family 27 subfamily A member 1                                                                                                                                                                                          | 1.01 | 0.000 |
| ARMC9                                                                | armadillo repeat containing 9                                                                                                                                                                                                           | 1.33 | 0.002 |
| SCARNA5                                                              | small Cajal body-specific RNA 5                                                                                                                                                                                                         | 1.40 | 0.000 |
| SCARNA6                                                              | small Cajal body-specific RNA 6                                                                                                                                                                                                         | 1.52 | 0.000 |
| 101001020                                                            | long intergenic non-protein coding RNA 1920                                                                                                                                                                                             | 1 22 | 0.002 |

| SNORA75                              | small nucleolar RNA, H/ACA box 75                                                                                                      | 2.70 | 0.000 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| SNORA60                              | small nucleolar RNA, H/ACA box 60                                                                                                      | 3.56 | 0.000 |
| SNORD12C                             | small nucleolar RNA, C/D box 12C                                                                                                       | 1.36 | 0.000 |
| SNORD17                              | small nucleolar RNA, C/D box 17                                                                                                        | 1.24 | 0.001 |
| THBD                                 | thrombomodulin                                                                                                                         | 1.37 | 0.000 |
| SNORA71B                             | small nucleolar RNA, H/ACA box 71B                                                                                                     | 2.01 | 0.000 |
| SNORA71D                             | small nucleolar RNA, H/ACA box 71D                                                                                                     | 1.60 | 0.001 |
| SDF2L1                               | stromal cell derived factor 2 like 1                                                                                                   | 1.17 | 0.019 |
| HMOX1                                | heme oxygenase 1                                                                                                                       | 1.15 | 0.001 |
| KDELR3                               | KDEL endoplasmic reticulum protein retention receptor 3                                                                                | 1.06 | 0.000 |
| SNORA63D                             | small nucleolar RNA, H/ACA box 63D                                                                                                     | 1.05 | 0.001 |
| SNORD66                              | small nucleolar RNA, C/D box 66                                                                                                        | 1.50 | 0.000 |
| SCARNA7                              | small Cajal body-specific RNA 7                                                                                                        | 1.13 | 0.000 |
| RNVU1-18 RNU1-1 RNU1-3 RNU1-4 RNU1-2 | RNA, variant U1 small nuclear 18 RNA, U1 small nuclear<br>1 RNA, U1 small nuclear 3 RNA, U1 small nuclear 4 RNA,<br>U1 small nuclear 2 | 1.64 | 0.006 |
| PALLD                                | palladin, cytoskeletal associated protein                                                                                              | 1.21 | 0.000 |
| CXCL5                                | C-X-C motif chemokine ligand 5                                                                                                         | 1.30 | 0.001 |
| ABCG2                                | ATP binding cassette subfamily G member 2 (Junior blood group)                                                                         | 1.71 | 0.000 |
| ITGA2                                | integrin subunit alpha 2                                                                                                               | 1.36 | 0.003 |
| OCLN                                 | occludin                                                                                                                               | 1.50 | 0.003 |
| SNORA74A                             | small nucleolar RNA, H/ACA box 74A                                                                                                     | 1.41 | 0.000 |
| VTRNA1-1                             | vault RNA 1-1                                                                                                                          | 1.80 | 0.008 |
| ABLIM3                               | actin binding LIM protein family member 3                                                                                              | 1.14 | 0.001 |
| SNORA74B                             | small nucleolar RNA, H/ACA box 74B                                                                                                     | 1.76 | 0.000 |
| SCARNA18                             | small Cajal body-specific RNA 18                                                                                                       | 1.60 | 0.001 |
| PPIC                                 | peptidylprolyl isomerase C                                                                                                             | 1.08 | 0.001 |
| HSPA1A HSPA1B                        | heat shock protein family A (Hsp70) member 1A heat<br>shock protein family A (Hsp70) member 1B                                         | 2.73 | 0.006 |
| CD109                                | CD109 molecule                                                                                                                         | 1.05 | 0.001 |
| ZNF354B                              | zinc finger protein 354B                                                                                                               | 1.23 | 0.012 |
| SNORD100                             | small nucleolar RNA, C/D box 100                                                                                                       | 1.01 | 0.001 |
| SNORA33                              | small nucleolar RNA, H/ACA box 33                                                                                                      | 2.22 | 0.000 |
| SCARNA27                             | small Cajal body-specific RNA 27                                                                                                       | 1.19 | 0.000 |
| PLA2G7                               | phospholipase A2 group VII                                                                                                             | 1.02 | 0.035 |
| CNR1                                 | cannabinoid receptor 1                                                                                                                 | 1.33 | 0.000 |
| HSPA1B HSPA1A                        | heat shock protein family A (Hsp70) member 1B heat<br>shock protein family A (Hsp70) member 1A                                         | 2.61 | 0.003 |
| HSPA1B                               | heat shock protein family A (Hsp70) member 1B                                                                                          | 2.76 | 0.007 |
| SNORA38                              | small nucleolar RNA, H/ACA box 38                                                                                                      | 1.18 | 0.000 |
| TSPAN13                              | tetraspanin 13                                                                                                                         | 1.06 | 0.043 |
| SNORA14A                             | small nucleolar RNA, H/ACA box 14A                                                                                                     | 1.60 | 0.000 |
| CD36                                 | CD36 molecule                                                                                                                          | 1.55 | 0.000 |
| ZFAND2A                              | zinc finger AN1-type containing 2A                                                                                                     | 1.11 | 0.002 |
| FKBP14                               | FKBP prolyl isomerase 14                                                                                                               | 1.00 | 0.002 |

| SNORA9                         | small nucleolar RNA, H/ACA box 9                                                                                            | 1.41 | 0.001 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|-------|
| SNORA5C                        | small nucleolar RNA, H/ACA box 5C                                                                                           | 1.11 | 0.001 |
| PDK4                           | pyruvate dehydrogenase kinase 4                                                                                             | 2.06 | 0.006 |
| PDIA4                          | protein disulfide isomerase family A member 4                                                                               | 1.19 | 0.002 |
| ATP6V0D2                       | ATPase H+ transporting V0 subunit d2                                                                                        | 2.82 | 0.003 |
| SNORA1 SNORA1B                 | small nucleolar RNA, H/ACA box 1 small nucleolar RNA,<br>H/ACA box 1B                                                       | 1.13 | 0.038 |
| FABP4                          | fatty acid binding protein 4                                                                                                | 2.44 | 0.000 |
| SNORA72                        | small nucleolar RNA, H/ACA box 72                                                                                           | 1.74 | 0.000 |
| ANXA1                          | annexin A1                                                                                                                  | 1.64 | 0.001 |
| SCARNA8                        | small Cajal body-specific RNA 8                                                                                             | 2.14 | 0.000 |
| PLIN2                          | perilipin 2                                                                                                                 | 1.54 | 0.000 |
| HSPA5                          | heat shock protein family A (Hsp70) member 5                                                                                | 1.18 | 0.000 |
| MIR12136                       | microRNA 12136                                                                                                              | 2.01 | 0.001 |
| SNORA11                        | small nucleolar RNA, H/ACA box 11                                                                                           | 2.35 | 0.000 |
| ANKRD30BP2                     | ankyrin repeat domain 30B pseudogene 2                                                                                      | 2.63 | 0.000 |
| SNORA61 SNHG12                 | small nucleolar RNA, H/ACA box 61 small nucleolar RNA<br>host gene 12                                                       | 1.45 | 0.000 |
| SNORA44 SNHG12                 | small nucleolar RNA, H/ACA box 44 small nucleolar RNA<br>host gene 12                                                       | 1.02 | 0.010 |
| SNORA16A                       | small nucleolar RNA, H/ACA box 16A                                                                                          | 1.20 | 0.003 |
| SNORA19                        | small nucleolar RNA, H/ACA box 19                                                                                           | 1.08 | 0.036 |
| SNORA52                        | small nucleolar RNA, H/ACA box 52                                                                                           | 1.40 | 0.000 |
| SNORA3A                        | small nucleolar RNA, H/ACA box 3A                                                                                           | 1.21 | 0.000 |
| MIR612 NEAT1                   | microRNA 612   nuclear paraspeckle assembly transcript 1                                                                    | 1.20 | 0.007 |
| SNORA25                        | small nucleolar RNA, H/ACA box 25                                                                                           | 1.10 | 0.000 |
| SNORA1B SNORA1                 | small nucleolar RNA, H/ACA box 1B small nucleolar RNA,<br>H/ACA box 1                                                       | 1.66 | 0.006 |
| SNORA41                        | small nucleolar RNA, H/ACA box 41                                                                                           | 1.84 | 0.000 |
| SNORA51                        | small nucleolar RNA, H/ACA box 51                                                                                           | 1.32 | 0.000 |
| SNORA6                         | small nucleolar RNA, H/ACA box 6                                                                                            | 1.91 | 0.000 |
| SNORA20 SNORA20B               | small nucleolar RNA, H/ACA box 20 small nucleolar RNA,<br>H/ACA box 20B                                                     | 1.72 | 0.000 |
| SNORA36C MIR664B SNORA36A DKC1 | small nucleolar RNA, H/ACA box 36C microRNA<br>664b small nucleolar RNA, H/ACA box 36A dyskerin<br>pseudouridine synthase 1 | 1.33 | 0.006 |
| SNORA56 DKC1                   | small nucleolar RNA, H/ACA box 56 dyskerin<br>pseudouridine synthase 1                                                      | 2.09 | 0.001 |
| PDE4DIP PDE4DIPP2              | phosphodiesterase 4D interacting protein   PDE4DIP<br>pseudogene 2                                                          | 1.12 | 0.000 |
| SNORA17A SNHG7                 | small nucleolar RNA, H/ACA box 17A small nucleolar RNA<br>host gene 7                                                       | 1.91 | 0.019 |

| Gene Symbol  | Gene description                                                     | LogFC | p-value |
|--------------|----------------------------------------------------------------------|-------|---------|
| CDC20        | cell division cycle 20                                               | -1.05 | 0.030   |
| KIF2C        | kinesin family member 2C                                             | -1.15 | 0.004   |
| IFI44L       | interferon induced protein 44 like                                   | -3.37 | 0.002   |
| IF144        | interferon induced protein 44                                        | -1.58 | 0.002   |
| DTL          | denticleless E3 ubiquitin protein ligase homolog                     | -1.68 | 0.000   |
| CENPF        | centromere protein F                                                 | -1.12 | 0.007   |
| EXO1         | exonuclease 1                                                        | -1.18 | 0.000   |
| CLSPN        | claspin                                                              | -1.13 | 0.002   |
| STIL         | STIL centriolar assembly protein                                     | -1.19 | 0.000   |
| DHCR24       | 24-dehydrocholesterol reductase                                      | -1.15 | 0.000   |
| GBP5         | guanylate binding protein 5                                          | -1.08 | 0.000   |
| NGF          | nerve growth factor                                                  | -1.52 | 0.000   |
| LOC101927851 | uncharacterized LOC101927851                                         | -1.13 | 0.004   |
| MCM10        | minichromosome maintenance 10 replication initiation factor          | -1.10 | 0.001   |
| CDK1         | cyclin dependent kinase 1                                            | -1.04 | 0.001   |
| IFIT3        | interferon induced protein with tetratricopeptide repeats 3          | -1.09 | 0.015   |
| IFIT1        | interferon induced protein with tetratricopeptide repeats 1          | -1.26 | 0.001   |
| KIF11        | kinesin family member 11                                             | -1.14 | 0.003   |
| OLMALINC     | oligodendrocyte maturation-associated long intergenic non-coding RNA | -1.01 | 0.002   |
| CH25H        | cholesterol 25-hydroxylase                                           | -1.48 | 0.000   |
| MKI67        | marker of proliferation Ki-67                                        | -1.26 | 0.000   |
| IFITM1       | interferon induced transmembrane protein 1                           | -2.16 | 0.000   |
| TRIM22       | tripartite motif containing 22                                       | -1.28 | 0.005   |
| FAM111B      | FAM111 trypsin like peptidase B                                      | -1.81 | 0.000   |
| MS4A2        | membrane spanning 4-domains A2                                       | -1.05 | 0.048   |
| FADS2        | fatty acid desaturase 2                                              | -1.04 | 0.000   |
| E2F8         | E2F transcription factor 8                                           | -1.02 | 0.000   |
| MPEG1        | macrophage expressed 1                                               | -1.24 | 0.019   |
| DHCR7        | 7-dehydrocholesterol reductase                                       | -1.19 | 0.000   |
| MMP8         | matrix metallopeptidase 8                                            | -1.05 | 0.000   |
| MMP1         | matrix metallopeptidase 1                                            | -1.05 | 0.001   |
| MMP12        | matrix metallopeptidase 12                                           | -1.66 | 0.012   |
| OAS1         | 2'-5'-oligoadenylate synthetase 1                                    | -1.33 | 0.000   |
| OAS3         | 2'-5'-oligoadenylate synthetase 3                                    | -1.42 | 0.000   |
| OAS2         | 2'-5'-oligoadenylate synthetase 2                                    | -1.66 | 0.000   |
| AICDA        | activation induced cytidine deaminase                                | -1.04 | 0.016   |
| LINC02384    | long intergenic non-protein coding RNA 2384                          | -1.66 | 0.001   |
| SLC9A7P1     | solute carrier family 9 member 7 pseudogene 1                        | -1.03 | 0.001   |
| C1QTNF9      | C1q and TNF related 9                                                | -1.19 | 0.028   |
| SKA3         | spindle and kinetochore associated complex subunit 3                 | -1.19 | 0.000   |

**Supplementary Table 2**. 140 upregulated DEGs between non-hydrolysis products and hydrolysis products incubated macrophages.

| GPR183   | G protein-coupled receptor 183                                      | -1.02 | 0.036 |
|----------|---------------------------------------------------------------------|-------|-------|
| KNL1     | kinetochore scaffold 1                                              | -1.30 | 0.000 |
| RAD51    | RAD51 recombinase                                                   | -1.16 | 0.001 |
| DLL4     | delta like canonical Notch ligand 4                                 | -1.24 | 0.000 |
| CHAC1    | ChaC glutathione specific gamma-glutamylcyclotransferase 1          | -2.14 | 0.000 |
| NUSAP1   | nucleolar and spindle associated protein 1                          | -1.13 | 0.000 |
| WDR76    | WD repeat domain 76                                                 | -1.15 | 0.000 |
| FANCI    | FA complementation group I                                          | -1.15 | 0.000 |
| IL21R    | interleukin 21 receptor                                             | -1.08 | 0.002 |
| MMP2-AS1 | MMP2 antisense RNA 1                                                | -2.36 | 0.002 |
| GINS2    | GINS complex subunit 2                                              | -1.15 | 0.002 |
| XAF1     | XIAP associated factor 1                                            | -1.44 | 0.000 |
| TMEM97   | transmembrane protein 97                                            | -1.24 | 0.000 |
| CDC6     | cell division cycle 6                                               | -1.03 | 0.002 |
| PRR11    | proline rich 11                                                     | -1.06 | 0.002 |
| CCL1     | C-C motif chemokine ligand 1                                        | -1.82 | 0.001 |
| TOP2A    | DNA topoisomerase II alpha                                          | -1.38 | 0.003 |
| TYMS     | thymidylate synthetase                                              | -1.31 | 0.000 |
| NDC80    | NDC80 kinetochore complex component                                 | -1.12 | 0.001 |
| LIPG     | lipase G, endothelial type                                          | -1.02 | 0.001 |
| SKA1     | spindle and kinetochore associated complex subunit 1                | -1.58 | 0.000 |
| SERPINB7 | serpin family B member 7                                            | -1.18 | 0.000 |
| HMSD     | histocompatibility minor serpin domain containing                   | -1.89 | 0.012 |
| CDH2     | cadherin 2                                                          | -1.06 | 0.029 |
| SIGLEC9  | sialic acid binding Ig like lectin 9                                | -1.02 | 0.004 |
| ASF1B    | anti-silencing function 1B histone chaperone                        | -1.21 | 0.000 |
| RSAD2    | radical S-adenosyl methionine domain containing 2                   | -1.27 | 0.003 |
| RRM2     | ribonucleotide reductase regulatory subunit M2                      | -1.48 | 0.000 |
| NCAPH    | non-SMC condensin I complex subunit H                               | -1.24 | 0.000 |
| CDCA7    | cell division cycle associated 7                                    | -1.23 | 0.002 |
| NRIR     | negative regulator of interferon response                           | -1.16 | 0.013 |
| CMPK2    | cytidine/uridine monophosphate kinase 2                             | -1.27 | 0.001 |
| CYRIA    | CYFIP related Rac1 interactor A                                     | -1.11 | 0.013 |
| LRRTM1   | leucine rich repeat transmembrane neuronal 1                        | -1.01 | 0.009 |
| DUSP2    | dual specificity phosphatase 2                                      | -1.19 | 0.001 |
| BUB1     | BUB1 mitotic checkpoint serine/threonine kinase                     | -1.24 | 0.002 |
| CKAP2L   | cytoskeleton associated protein 2 like                              | -1.07 | 0.004 |
| MCM6     | minichromosome maintenance complex component 6                      | -1.12 | 0.000 |
| MCM8     | minichromosome maintenance 8 homologous recombination repair factor | -1.20 | 0.000 |
| TPX2     | TPX2 microtubule nucleation factor                                  | -1.44 | 0.001 |
| CPXM1    | carboxypeptidase X, M14 family member 1                             | -1.38 | 0.000 |
| MX2      | MX dynamin like GTPase 2                                            | -1.40 | 0.000 |
| MX1      | MX dynamin like GTPase 1                                            | -1.80 | 0.000 |
|          |                                                                     |       |       |

| PTX3              | pentraxin 3                                                                                                      | -1.10 | 0.004 |
|-------------------|------------------------------------------------------------------------------------------------------------------|-------|-------|
| SG01              | shugoshin 1                                                                                                      | -1.20 | 0.003 |
| TNFSF10           | TNF superfamily member 10                                                                                        | -1.32 | 0.017 |
| LAMP3             | lysosomal associated membrane protein 3                                                                          | -1.28 | 0.002 |
| P3H2              | prolyl 3-hydroxylase 2                                                                                           | -1.17 | 0.001 |
| NCAPG             | non-SMC condensin I complex subunit G                                                                            | -1.49 | 0.000 |
| SLIT2             | slit guidance ligand 2                                                                                           | -1.37 | 0.009 |
| SLC4A4            | solute carrier family 4 member 4                                                                                 | -1.02 | 0.001 |
| HERC6             | HECT and RLD domain containing E3 ubiquitin protein ligase family member 6                                       | -1.06 | 0.000 |
| PLK4              | polo like kinase 4                                                                                               | -1.07 | 0.000 |
| LINC02562         | long intergenic non-protein coding RNA 2562                                                                      | -1.27 | 0.001 |
| CXCL10            | C-X-C motif chemokine ligand 10                                                                                  | -2.15 | 0.000 |
| CXCL11            | C-X-C motif chemokine ligand 11                                                                                  | -1.11 | 0.007 |
| DKK2              | dickkopf WNT signaling pathway inhibitor 2                                                                       | -2.00 | 0.008 |
| CCNA2             | cyclin A2                                                                                                        | -1.48 | 0.000 |
| LOC102467226      | uncharacterized LOC102467226                                                                                     | -1.60 | 0.006 |
| HMMR              | hyaluronan mediated motility receptor                                                                            | -1.14 | 0.004 |
| CD180             | CD180 molecule                                                                                                   | -1.03 | 0.001 |
| SLCO4C1           | solute carrier organic anion transporter family member 4C1                                                       | -1.04 | 0.002 |
| CXCL14            | C-X-C motif chemokine ligand 14                                                                                  | -1.33 | 0.025 |
| IL12B             | interleukin 12B                                                                                                  | -2.76 | 0.016 |
| H2BC14            | H2B clustered histone 14                                                                                         | -1.16 | 0.016 |
| HLA-DQA2          | major histocompatibility complex, class II, DQ alpha 2                                                           | -1.88 | 0.002 |
| SCAT8             | S-phase cancer associated transcript 8                                                                           | -1.25 | 0.020 |
| ттк               | TTK protein kinase                                                                                               | -1.16 | 0.003 |
| VGLL2             | vestigial like family member 2                                                                                   | -1.09 | 0.003 |
| МҮВ               | MYB proto-oncogene, transcription factor                                                                         | -1.28 | 0.001 |
| PLEKHG1           | pleckstrin homology and RhoGEF domain containing G1                                                              | -1.73 | 0.008 |
| ACAT2             | acetyl-CoA acetyltransferase 2                                                                                   | -1.03 | 0.000 |
| MAS1              | MAS1 proto-oncogene, G protein-coupled receptor                                                                  | -1.20 | 0.000 |
| SERPINB9          | serpin family B member 9                                                                                         | -1.09 | 0.026 |
| H3C8              | H3 clustered histone 8                                                                                           | -1.02 | 0.008 |
| H1-5              | H1.5 linker histone, cluster member                                                                              | -1.17 | 0.001 |
| MCM3              | minichromosome maintenance complex component 3                                                                   | -1.07 | 0.000 |
| HLA-DQA2 HLA-DQA1 | major histocompatibility complex, class II, DQ alpha 2 major histocompatibility complex, class II, DQ<br>alpha 1 | -1.92 | 0.004 |
| IL6               | interleukin 6                                                                                                    | -1.72 | 0.001 |
| IL6-AS1           | IL6 antisense RNA 1                                                                                              | -2.00 | 0.001 |
| PSPH              | phosphoserine phosphatase                                                                                        | -1.04 | 0.001 |
| GPR85             | G protein-coupled receptor 85                                                                                    | -1.17 | 0.002 |
| PTK2B             | protein tyrosine kinase 2 beta                                                                                   | -1.11 | 0.002 |
| ESCO2             | establishment of sister chromatid cohesion N-acetyltransferase 2                                                 | -1.31 | 0.000 |
| MCM4              | minichromosome maintenance complex component 4                                                                   | -1.01 | 0.001 |
| LY6E              | lymphocyte antigen 6 family member E                                                                             | -1.22 | 0.000 |

| РВК                                  | PDZ binding kinase                                                                        | -1.19 | 0.004 |
|--------------------------------------|-------------------------------------------------------------------------------------------|-------|-------|
| CCNE2                                | cyclin E2                                                                                 | -1.30 | 0.001 |
| DSCC1                                | DNA replication and sister chromatid cohesion 1                                           | -1.23 | 0.002 |
| HAS2                                 | hyaluronan synthase 2                                                                     | -1.11 | 0.002 |
| ATAD2                                | ATPase family AAA domain containing 2                                                     | -1.12 | 0.000 |
| IL33                                 | interleukin 33                                                                            | -1.63 | 0.004 |
| MELK                                 | maternal embryonic leucine zipper kinase                                                  | -1.20 | 0.001 |
| RORB                                 | RAR related orphan receptor B                                                             | -1.21 | 0.006 |
| CCL19                                | C-C motif chemokine ligand 19                                                             | -1.51 | 0.002 |
| TLR7                                 | toll like receptor 7                                                                      | -1.21 | 0.005 |
| CENPI                                | centromere protein I                                                                      | -1.04 | 0.000 |
| ANKRD20A8P ANKRD20A4-<br>ANKRD20A20P | ankyrin repeat domain 20 family member A8, pseudogene   ANKRD20A4-ANKRD20A20P readthrough | -1.18 | 0.001 |
| ZNF730                               | zinc finger protein 730                                                                   | -1.08 | 0.000 |
| LOC285889                            | uncharacterized LOC285889                                                                 | -1.14 | 0.040 |
|                                      |                                                                                           |       |       |

# Supplementary Table 3. GO and KEGG enrichment analysis of up-regulated genes of macrophage samples.

| Category         | Term                                                                                                  | Count | %     | p-value  |
|------------------|-------------------------------------------------------------------------------------------------------|-------|-------|----------|
| GOTERM_BP_DIRECT | GO:0006396~RNA processing                                                                             | 52    | 44.44 | 4.03E-49 |
| GOTERM_BP_DIRECT | GO:0036498~IRE1-mediated unfolded protein response                                                    | 5     | 4.27  | 2.51E-04 |
| GOTERM_BP_DIRECT | GO:0051085~chaperone mediated protein folding requiring cofactor                                      | 4     | 3.42  | 8.92E-04 |
| GOTERM_BP_DIRECT | GO:0042167~heme catabolic process                                                                     | 3     | 2.56  | 3.52E-03 |
| GOTERM_BP_DIRECT | GO:0015909~long-chain fatty acid transport                                                            | 3     | 2.56  | 3.97E-03 |
| GOTERM_BP_DIRECT | GO:0019222~regulation of metabolic process                                                            | 4     | 3.42  | 4.18E-03 |
| GOTERM_BP_DIRECT | GO:0034620~cellular response to unfolded protein                                                      | 3     | 2.56  | 1.06E-02 |
| GOTERM_BP_DIRECT | GO:0071260~cellular response to mechanical stimulus                                                   | 4     | 3.42  | 1.12E-02 |
| GOTERM_BP_DIRECT | GO:0050729~positive regulation of inflammatory response                                               | 4     | 3.42  | 2.00E-02 |
| GOTERM_BP_DIRECT | GO:0097201~negative regulation of transcription from RNA polymerase II promoter in response to stress | 2     | 1.71  | 2.76E-02 |
| GOTERM_BP_DIRECT | GO:0034605~cellular response to heat                                                                  | 3     | 2.56  | 3.54E-02 |
| GOTERM_BP_DIRECT | GO:0071243~cellular response to arsenic-containing substance                                          | 2     | 1.71  | 4.91E-02 |
| GOTERM_CC_DIRECT | GO:0005730~nucleolus                                                                                  | 56    | 47.86 | 3.13E-36 |
| GOTERM_CC_DIRECT | GO:0015030~Cajal body                                                                                 | 8     | 6.84  | 1.53E-07 |
| GOTERM_CC_DIRECT | GO:0016324~apical plasma membrane                                                                     | 6     | 5.13  | 4.84E-02 |
| GOTERM_MF_DIRECT | GO:0051787~misfolded protein binding                                                                  | 3     | 2.56  | 3.37E-03 |
| GOTERM_MF_DIRECT | GO:0051087~chaperone binding                                                                          | 4     | 3.42  | 4.33E-03 |
| GOTERM_MF_DIRECT | GO:0044183~protein binding involved in protein folding                                                | 3     | 2.56  | 6.65E-03 |
| GOTERM_MF_DIRECT | GO:0042802~identical protein binding                                                                  | 12    | 10.26 | 1.09E-02 |
| GOTERM_MF_DIRECT | GO:0031072~heat shock protein binding                                                                 | 3     | 2.56  | 1.71E-02 |
| GOTERM_MF_DIRECT | GO:0005509~calcium ion binding                                                                        | 7     | 5.98  | 2.30E-02 |
| GOTERM_MF_DIRECT | GO:0008514~organic anion transmembrane transporter activity                                           | 2     | 1.71  | 3.81E-02 |
| GOTERM_MF_DIRECT | GO:0005543~phospholipid binding                                                                       | 3     | 2.56  | 4.84E-02 |
| KEGG_PATHWAY     | hsa03320:PPAR signaling pathway                                                                       | 5     | 4.27  | 2.25E-04 |
| KEGG_PATHWAY     | hsa05110:Vibrio cholerae infection                                                                    | 4     | 3.42  | 1.06E-03 |
| KEGG_PATHWAY     | hsa04145:Phagosome                                                                                    | 4     | 3.42  | 2.33E-02 |
| KEGG_PATHWAY     | hsa04141:Protein processing in endoplasmic reticulum                                                  | 4     | 3.42  | 3.16E-02 |
|                  |                                                                                                       |       |       |          |

|                  |                                                                                            |       |       | -        |
|------------------|--------------------------------------------------------------------------------------------|-------|-------|----------|
| Category         | Term                                                                                       | Count | %     | p-value  |
| GOTERM_BP_DIRECT | GO:0006260~DNA replication                                                                 | 14    | 10.14 | 1.32E-11 |
| GOTERM_BP_DIRECT | GO:0051607~defense response to virus                                                       | 16    | 11.59 | 1.46E-11 |
| GOTERM_BP_DIRECT | GO:0009615~response to virus                                                               | 12    | 8.70  | 1.92E-10 |
| GOTERM_BP_DIRECT | GO:0051301~cell division                                                                   | 18    | 13.04 | 4.06E-10 |
| GOTERM_BP_DIRECT | GO:0007052~mitotic spindle organization                                                    | 12    | 8.70  | 5.68E-10 |
| GOTERM_BP_DIRECT | GO:0060337~type I interferon signaling pathway                                             | 10    | 7.25  | 5.99E-10 |
| GOTERM_BP_DIRECT | GO:0006270~DNA replication initiation                                                      | 7     | 5.07  | 2.41E-07 |
| GOTERM_BP_DIRECT | GO:0000278~mitotic cell cycle                                                              | 10    | 7.25  | 4.01E-07 |
| GOTERM_BP_DIRECT | GO:0045071~negative regulation of viral genome replication                                 | 7     | 5.07  | 4.88E-07 |
| GOTERM_BP_DIRECT | GO:0032760~positive regulation of tumor necrosis factor production                         | 8     | 5.80  | 5.34E-06 |
| GOTERM_BP_DIRECT | GO:0007059~chromosome segregation                                                          | 7     | 5.07  | 9.01E-06 |
| GOTERM_BP_DIRECT | GO:0006268~DNA unwinding involved in DNA replication                                       | 5     | 3.62  | 1.34E-05 |
| GOTERM_BP_DIRECT | GO:0098586~cellular response to virus                                                      | 6     | 4.35  | 2.79E-05 |
| GOTERM_BP_DIRECT | GO:0008283~cell proliferation                                                              | 8     | 5.80  | 4.99E-05 |
| GOTERM_BP_DIRECT | GO:0000727~double-strand break repair via break-induced replication                        | 4     | 2.90  | 5.55E-05 |
| GOTERM_BP_DIRECT | GO:0060700~regulation of ribonuclease activity                                             | 3     | 2.17  | 2.46E-04 |
| GOTERM_BP_DIRECT | GO:0045087~innate immune response                                                          | 13    | 9.42  | 5.46E-04 |
| GOTERM_BP_DIRECT | GO:0007094~mitotic spindle assembly checkpoint                                             | 4     | 2.90  | 6.87E-04 |
| GOTERM_BP_DIRECT | GO:0036388~pre-replicative complex assembly                                                | 5     | 3.62  | 8.29E-04 |
| GOTERM_BP_DIRECT | GO:0006955~immune response                                                                 | 11    | 7.97  | 1.09E-03 |
| GOTERM_BP_DIRECT | GO:0070098~chemokine-mediated signaling pathway                                            | 5     | 3.62  | 1.10E-03 |
| GOTERM_BP_DIRECT | GO:0031640~killing of cells of other organism                                              | 5     | 3.62  | 1.10E-03 |
| GOTERM_BP_DIRECT | GO:0006267~pre-replicative complex assembly involved in nuclear cell cycle DNA replication | 3     | 2.17  | 1.13E-03 |
| GOTERM_BP_DIRECT | GO:0060333~interferon-gamma-mediated signaling pathway                                     | 5     | 3.62  | 1.22E-03 |
| GOTERM_BP_DIRECT | GO:0006954~inflammatory response                                                           | 10    | 7.25  | 1.23E-03 |
| GOTERM_BP_DIRECT | GO:0071222~cellular response to lipopolysaccharide                                         | 7     | 5.07  | 1.48E-03 |
| GOTERM_BP_DIRECT | GO:0010389~regulation of G2/M transition of mitotic cell cycle                             | 5     | 3.62  | 1.97E-03 |
| GOTERM_BP_DIRECT | GO:0035455~response to interferon-alpha                                                    | 3     | 2.17  | 2.19E-03 |
| GOTERM_BP_DIRECT | GO:0032728~positive regulation of interferon-beta production                               | 4     | 2.90  | 2.51E-03 |
| GOTERM_BP_DIRECT | GO:0007076~mitotic chromosome condensation                                                 | 4     | 2.90  | 2.51E-03 |
| GOTERM_BP_DIRECT | GO:0034501~protein localization to kinetochore                                             | 3     | 2.17  | 2.62E-03 |
| GOTERM_BP_DIRECT | GO:0051983~regulation of chromosome segregation                                            | 3     | 2.17  | 2.62E-03 |
| GOTERM_BP_DIRECT | GO:0006271~DNA strand elongation involved in DNA replication                               | 3     | 2.17  | 3.08E-03 |
| GOTERM_BP_DIRECT | GO:0051310~metaphase plate congression                                                     | 3     | 2.17  | 3.08E-03 |
| GOTERM_BP_DIRECT | GO:0008608~attachment of spindle microtubules to kinetochore                               | 3     | 2.17  | 3.58E-03 |
| GOTERM_BP_DIRECT | GO:0070106~interleukin-27-mediated signaling pathway                                       | 3     | 2.17  | 4.11E-03 |
| GOTERM_BP_DIRECT | GO:0010818~T cell chemotaxis                                                               | 3     | 2.17  | 4.11E-03 |
| GOTERM_BP_DIRECT | GO:0006915~apoptotic process                                                               | 11    | 7.97  | 4.63E-03 |
| GOTERM_BP_DIRECT | GO:0061844~antimicrobial humoral immune response mediated by antimicrobial peptide         | 5     | 3.62  | 5.48E-03 |
| GOTERM_BP_DIRECT | GO:0060339~negative regulation of type I interferon-mediated signaling pathway             | 3     | 2.17  | 7.29E-03 |
| GOTERM_BP_DIRECT | GO:0046597~negative regulation of viral entry into host cell                               | 3     | 2.17  | 9.59E-03 |
| GOTERM_BP_DIRECT | GO:0008285~negative regulation of cell proliferation                                       | 9     | 6.52  | 9.70E-03 |

# Supplementary Table 4. GO and KEGG enrichment analysis of down-regulated genes of macrophage samples.

| GOTERM_BP_DIRECT | GO:0032740~positive regulation of interleukin-17 production                                          | 3  | 2.17  | 1.04E-02 |
|------------------|------------------------------------------------------------------------------------------------------|----|-------|----------|
| GOTERM_BP_DIRECT | GO:0044772~mitotic cell cycle phase transition                                                       | 3  | 2.17  | 1.04E-02 |
| GOTERM_BP_DIRECT | GO:1901224~positive regulation of NIK/NF-kappaB signaling                                            | 4  | 2.90  | 1.05E-02 |
| GOTERM_BP_DIRECT | GO:0043154~negative regulation of cysteine-type endopeptidase activity involved in apoptotic process | 4  | 2.90  | 1.18E-02 |
| GOTERM_BP_DIRECT | GO:0048511~rhythmic process                                                                          | 4  | 2.90  | 1.41E-02 |
| GOTERM_BP_DIRECT | GO:0007166~cell surface receptor signaling pathway                                                   | 7  | 5.07  | 1.50E-02 |
| GOTERM_BP_DIRECT | GO:0030593~neutrophil chemotaxis                                                                     | 4  | 2.90  | 1.56E-02 |
| GOTERM_BP_DIRECT | GO:0000083~regulation of transcription involved in G1/S transition of mitotic cell cycle             | 3  | 2.17  | 1.60E-02 |
| GOTERM_BP_DIRECT | GO:0009410~response to xenobiotic stimulus                                                           | 6  | 4.35  | 1.89E-02 |
| GOTERM_BP_DIRECT | GO:0071659~negative regulation of IP-10 production                                                   | 2  | 1.45  | 1.93E-02 |
| GOTERM_BP_DIRECT | GO:0034421~post-translational protein acetylation                                                    | 2  | 1.45  | 1.93E-02 |
| GOTERM_BP_DIRECT | GO:0000070~mitotic sister chromatid segregation                                                      | 3  | 2.17  | 2.03E-02 |
| GOTERM_BP_DIRECT | GO:0007095~mitotic G2 DNA damage checkpoint                                                          | 3  | 2.17  | 2.14E-02 |
| GOTERM_BP_DIRECT | GO:1903978~regulation of microglial cell activation                                                  | 2  | 1.45  | 2.56E-02 |
| GOTERM_BP_DIRECT | GO:0033489~cholesterol biosynthetic process via desmosterol                                          | 2  | 1.45  | 2.56E-02 |
| GOTERM_BP_DIRECT | GO:0006235~dTTP biosynthetic process                                                                 | 2  | 1.45  | 2.56E-02 |
| GOTERM_BP_DIRECT | GO:0033490~cholesterol biosynthetic process via lathosterol                                          | 2  | 1.45  | 2.56E-02 |
| GOTERM_BP_DIRECT | GO:0051726~regulation of cell cycle                                                                  | 6  | 4.35  | 2.58E-02 |
| GOTERM_BP_DIRECT | GO:0006695~cholesterol biosynthetic process                                                          | 3  | 2.17  | 2.63E-02 |
| GOTERM_BP_DIRECT | GO:0071346~cellular response to interferon-gamma                                                     | 4  | 2.90  | 2.64E-02 |
| GOTERM_BP_DIRECT | GO:0032755~positive regulation of interleukin-6 production                                           | 4  | 2.90  | 2.85E-02 |
| GOTERM_BP_DIRECT | GO:0006974~cellular response to DNA damage stimulus                                                  | 6  | 4.35  | 2.85E-02 |
| GOTERM_BP_DIRECT | GO:0090307~mitotic spindle assembly                                                                  | 3  | 2.17  | 2.88E-02 |
| GOTERM_BP_DIRECT | GO:0007049~cell cycle                                                                                | 7  | 5.07  | 2.88E-02 |
| GOTERM_BP_DIRECT | GO:0050729~positive regulation of inflammatory response                                              | 4  | 2.90  | 2.92E-02 |
| GOTERM_BP_DIRECT | GO:0030574~collagen catabolic process                                                                | 3  | 2.17  | 3.15E-02 |
| GOTERM_BP_DIRECT | GO:0046601~positive regulation of centriole replication                                              | 2  | 1.45  | 3.19E-02 |
| GOTERM_BP_DIRECT | GO:1905821~positive regulation of chromosome condensation                                            | 2  | 1.45  | 3.19E-02 |
| GOTERM_BP_DIRECT | GO:0002548~monocyte chemotaxis                                                                       | 3  | 2.17  | 3.42E-02 |
| GOTERM_BP_DIRECT | GO:0032722~positive regulation of chemokine production                                               | 3  | 2.17  | 3.42E-02 |
| GOTERM_BP_DIRECT | GO:0009617~response to bacterium                                                                     | 4  | 2.90  | 3.53E-02 |
| GOTERM_BP_DIRECT | GO:0006275~regulation of DNA replication                                                             | 3  | 2.17  | 3.70E-02 |
| GOTERM_BP_DIRECT | GO:1902975~mitotic DNA replication initiation                                                        | 2  | 1.45  | 3.81E-02 |
| GOTERM_BP_DIRECT | GO:2000342~negative regulation of chemokine (C-X-C motif) ligand 2 production                        | 2  | 1.45  | 3.81E-02 |
| GOTERM_BP_DIRECT | GO:0061470~T follicular helper cell differentiation                                                  | 2  | 1.45  | 3.81E-02 |
| GOTERM_BP_DIRECT | GO:0042493~response to drug                                                                          | 6  | 4.35  | 3.82E-02 |
| GOTERM_BP_DIRECT | GO:0045429~positive regulation of nitric oxide biosynthetic process                                  | 3  | 2.17  | 3.85E-02 |
| GOTERM_BP_DIRECT | GO:0006334~nucleosome assembly                                                                       | 4  | 2.90  | 4.37E-02 |
| GOTERM_BP_DIRECT | GO:0051574~positive regulation of histone H3-K9 methylation                                          | 2  | 1.45  | 4.44E-02 |
| GOTERM_BP_DIRECT | GO:0016185~synaptic vesicle budding from presynaptic endocytic zone membrane                         | 2  | 1.45  | 4.44E-02 |
| GOTERM_BP_DIRECT | GO:0000079~regulation of cyclin-dependent protein serine/threonine kinase activity                   | 3  | 2.17  | 4.45E-02 |
| GOTERM_BP_DIRECT | GO:0006935~chemotaxis                                                                                | 4  | 2.90  | 4.55E-02 |
| GOTERM_CC_DIRECT | GO:0000776~kinetochore                                                                               | 10 | 7.25  | 2.12E-07 |
| GOTERM_CC_DIRECT | GO:0005654~nucleoplasm                                                                               | 48 | 34.78 | 1.26E-06 |

| GOTERM_CC_DIRECT | GO:0072686~mitotic spindle                                                                       | 8   | 5.80  | 8.83E-06 |
|------------------|--------------------------------------------------------------------------------------------------|-----|-------|----------|
| GOTERM_CC_DIRECT | GO:0000922~spindle pole                                                                          | 8   | 5.80  | 1.51E-05 |
| GOTERM_CC_DIRECT | GO:0042555~MCM complex                                                                           | 4   | 2.90  | 1.95E-05 |
| GOTERM_CC_DIRECT | GO:0005694~chromosome                                                                            | 10  | 7.25  | 1.96E-05 |
| GOTERM_CC_DIRECT | GO:0005813~centrosome                                                                            | 14  | 10.14 | 3.34E-05 |
| GOTERM_CC_DIRECT | GO:0005819~spindle                                                                               | 8   | 5.80  | 3.40E-05 |
| GOTERM_CC_DIRECT | GO:0071162~CMG complex                                                                           | 4   | 2.90  | 3.79E-05 |
| GOTERM_CC_DIRECT | GO:0000775~chromosome, centromeric region                                                        | 6   | 4.35  | 4.63E-05 |
| GOTERM_CC_DIRECT | GO:0000940~condensed chromosome outer kinetochore                                                | 4   | 2.90  | 5.03E-05 |
| GOTERM_CC_DIRECT | GO:0016020~membrane                                                                              | 31  | 22.46 | 3.10E-04 |
| GOTERM_CC_DIRECT | GO:0005634~nucleus                                                                               | 56  | 40.58 | 3.16E-04 |
| GOTERM_CC_DIRECT | GO:0005829~cytosol                                                                               | 52  | 37.68 | 5.73E-04 |
| GOTERM_CC_DIRECT | GO:0000793~condensed chromosome                                                                  | 4   | 2.90  | 6.24E-04 |
| GOTERM_CC_DIRECT | GO:0000777~condensed chromosome kinetochore                                                      | 5   | 3.62  | 2.45E-03 |
| GOTERM_CC_DIRECT | GO:0005876~spindle microtubule                                                                   | 4   | 2.90  | 2.62E-03 |
| GOTERM_CC_DIRECT | GO:0005615~extracellular space                                                                   | 23  | 16.67 | 3.57E-03 |
| GOTERM_CC_DIRECT | GO:0015630~microtubule cytoskeleton                                                              | 6   | 4.35  | 5.24E-03 |
| GOTERM_CC_DIRECT | GO:0005737~cytoplasm                                                                             | 47  | 34.06 | 9.02E-03 |
| GOTERM_CC_DIRECT | GO:0031012~extracellular matrix                                                                  | 6   | 4.35  | 2.24E-02 |
| GOTERM_CC_DIRECT | GO:0000781~chromosome, telomeric region                                                          | 5   | 3.62  | 2.25E-02 |
| GOTERM_CC_DIRECT | GO:0000307~cyclin-dependent protein kinase holoenzyme complex                                    | 3   | 2.17  | 2.47E-02 |
| GOTERM_CC_DIRECT | GO:0000942~condensed nuclear chromosome outer kinetochore                                        | 2   | 1.45  | 2.48E-02 |
| GOTERM_CC_DIRECT | GO:0098844~postsynaptic endocytic zone membrane                                                  | 2   | 1.45  | 3.09E-02 |
| GOTERM_CC_DIRECT | GO:0005576~extracellular region                                                                  | 21  | 15.22 | 3.94E-02 |
| GOTERM_CC_DIRECT | GO:0000228~nuclear chromosome                                                                    | 3   | 2.17  | 4.34E-02 |
| GOTERM_CC_DIRECT | GO:0000796~condensin complex                                                                     | 2   | 1.45  | 4.89E-02 |
| GOTERM_MF_DIRECT | GO:0017116~single-stranded DNA-dependent ATP-dependent DNA helicase activity                     | 6   | 4.35  | 1.92E-07 |
| GOTERM_MF_DIRECT | GO:0003688~DNA replication origin binding                                                        | 6   | 4.35  | 3.14E-07 |
| GOTERM_MF_DIRECT | GO:0005515~protein binding                                                                       | 101 | 73.19 | 6.51E-05 |
| GOTERM_MF_DIRECT | GO:0001730~2'-5'-oligoadenylate synthetase activity                                              | 3   | 2.17  | 2.45E-04 |
| GOTERM_MF_DIRECT | GO:0008009~chemokine activity                                                                    | 5   | 3.62  | 3.01E-04 |
| GOTERM_MF_DIRECT | GO:0003697~single-stranded DNA binding                                                           | 6   | 4.35  | 7.93E-04 |
| GOTERM_MF_DIRECT | GO:0005524~ATP binding                                                                           | 22  | 15.94 | 8.05E-04 |
| GOTERM_MF_DIRECT | GO:0008017~microtubule binding                                                                   | 8   | 5.80  | 1.63E-03 |
| GOTERM_MF_DIRECT | GO:0008022~protein C-terminus binding                                                            | 7   | 5.07  | 2.25E-03 |
| GOTERM_MF_DIRECT | GO:0042802~identical protein binding                                                             | 21  | 15.22 | 6.16E-03 |
| GOTERM_MF_DIRECT | GO:0003678~DNA helicase activity                                                                 | 4   | 2.90  | 7.17E-03 |
| GOTERM_MF_DIRECT | GO:0003725~double-stranded RNA binding                                                           | 4   | 2.90  | 1.17E-02 |
| GOTERM_MF_DIRECT | GO:0003682~chromatin binding                                                                     | 8   | 5.80  | 2.95E-02 |
| GOTERM_MF_DIRECT | GO:0016628~oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor | 2   | 1.45  | 3.18E-02 |
| GOTERM_MF_DIRECT | GO:0048248~CXCR3 chemokine receptor binding                                                      | 2   | 1.45  | 3.18E-02 |
| GOTERM_MF_DIRECT | GO:0003677~DNA binding                                                                           | 15  | 10.87 | 3.35E-02 |
| GOTERM_MF_DIRECT | GO:0019899~enzyme binding                                                                        | 7   | 5.07  | 3.74E-02 |
| GOTERM_MF_DIRECT | GO:0004714~transmembrane receptor protein tyrosine kinase activity                               | 4   | 2.90  | 3.92E-02 |
|                  |                                                                                                  |     |       |          |

| KE | GG_PATHWAY | hsa05164:Influenza A                                                   | 13 | 9.42 | 1.37E-08 |
|----|------------|------------------------------------------------------------------------|----|------|----------|
| KE | GG_PATHWAY | hsa04110:Cell cycle                                                    | 10 | 7.25 | 8.99E-07 |
| KE | GG_PATHWAY | hsa05162:Measles                                                       | 9  | 6.52 | 1.89E-05 |
| KE | GG_PATHWAY | hsa05171:Coronavirus disease - COVID-19                                | 11 | 7.97 | 2.05E-05 |
| KE | GG_PATHWAY | hsa04060:Cytokine-cytokine receptor interaction                        | 11 | 7.97 | 1.56E-04 |
| KE | GG_PATHWAY | hsa04061:Viral protein interaction with cytokine and cytokine receptor | 7  | 5.07 | 1.78E-04 |
| KE | GG_PATHWAY | hsa05160:Hepatitis C                                                   | 8  | 5.80 | 3.21E-04 |
| KE | GG_PATHWAY | hsa05169:Epstein-Barr virus infection                                  | 8  | 5.80 | 1.43E-03 |
| KE | GG_PATHWAY | hsa04620:Toll-like receptor signaling pathway                          | 5  | 3.62 | 1.11E-02 |
| KE | GG_PATHWAY | hsa05321:Inflammatory bowel disease                                    | 4  | 2.90 | 1.70E-02 |
| KE | GG_PATHWAY | hsa04062:Chemokine signaling pathway                                   | 6  | 4.35 | 2.21E-02 |
| KE | GG_PATHWAY | hsa04114:Oocyte meiosis                                                | 5  | 3.62 | 2.39E-02 |
| KE | GG_PATHWAY | hsa03030:DNA replication                                               | 3  | 2.17 | 3.63E-02 |
|    |            |                                                                        |    |      |          |