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Abstract: Despite technological advancement, there is no 100% effective treatment against me-
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tastatic cancer. Increasing resistance of cancer cells towards chemotherapeutic drugs along with
detrimental side effects remained a concern. Thus, the urgency in developing new anticancer
agents has been raised. Anticancer peptides have been proven to display potent activity against a
wide variety of cancer cells. Several mode of actions describing their cytostatic and cytotoxic ef-
fect on cancer cells have been proposed which involves cell surface binding leading to membranol-

ysis or internalization to reach their intracellular target. Understanding the mechanism of action of
bor: these anticancer peptides is important in achieving full therapeutic success. In the present article,
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toxicity to cancer cells.

we discuss the anticancer action of peptides accompanied by the mechanisms underpinning their
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1. INTRODUCTION

Increasing resistance of cancer cells towards chemothera-
peutic drugs along with detrimental side effects for the past
decades have raised the urgency in developing new anti-
cancer agents. Recently, due to greater understanding of tu-
mor biology, development of new generation of optimized
therapeutic agents targeting genuine features of cancer cells
have been developed and being evaluated [1]. Anticancer
peptides (ACPs) are one of the untapped resource with low
toxicity towards normal cells apart from anticancer activity
against cancer cells [2]. Thus far, 60 peptide-based drugs
have been approved by Food and Drug Administration (F-
DA) and much more are in the process of seeking approval
[3]. Despite extensive research, information on how these
ACPs act on the cellular level to prevent cancer cell prolifer-
ation and migration is limited. Many different laboratories
have revealed novel anticancer mechanisms of ACPs be-
yond membrane pore formation, including interaction with
tumor-relevant ion channels [4], tumor suppressor [5], mito-
chondrial porins [6], and anti-apoptotic proteins [7] to alter
target molecules expression, act as inhibitors, activators, or
direct inducers of cell death [8, 9] (Table 1, Figure 1). Under-
standing their mechanism of action is important in drug de-
velopment optimization. In the present article, we discuss
the anticancer action of peptides accompanied by the mech-
anisms underpinning their toxicity to cancer cells.

2. MITOCHONDRIA-MEDIATED APOPTOSIS

ACPs inducing cancer cell death via activation of apop-
totic pathway is one of the standard approaches for cancer
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treatment [2]. Dysregulation of this programmed cellular
self-destruction often results in development of cancer.
Apoptotic cell death is characterized by chromatin condensa-
tion, cellular shrinkage, cell membrane blebbing as well as
nuclear fragmentation [10]. Intrinsic pathway takes place via
cytochrome c release triggered by stress or damage to the
cells, subsequently inducing apoptotic cell death by down-
stream activation of caspase cascade, resulting in cleavage
of multiple proteins [11]. The members of B-cell lymphoma
cell 2 (Bcl-2) family are also responsible for the release of
cytochrome ¢ from the mitochondria at the early stage of
apoptosis and can be divided into two groups of anti-apoptot-
ic (Mcl-1, Bcel-2, Bel-X and Bel-XL) and pro-apoptotic (Bax
and Bak) including BH3-only proteins (Bad, Bim, and Bid)
[12, 13]. Cytochrome c allows the assembly of apoptosome
complex by interacting with Apaf-1, which in turn activates
pro-caspase 9. Once activated, caspase-9 cleaves caspase-3
and triggers proteolytic cleavage of intracellular proteins
such as kinases, cytoskeletal proteins, DNA control proteins
and endonucleases inhibitor, ultimately leading to nucleus
fragmentation and disintegration of nuclear membrane
[14-16].

Overexpression of anti-apoptotic proteins has been ob-
served in various human cancers such as breast [17], pros-
tate [39], pancreatic [40] cancer, and neuroblastoma [41]
which contributed to cancer development, progression and
chemoresistance [42]. In fact, anti-apoptotic proteins se-
questered the well-conserved region of BH3-only proteins to
prevent activation of Bax and Bak [43]. Molecules mimick-
ing BH3-only protein were designed to disrupt the interac-
tion of anti-apoptotic proteins with BH3-only proteins by
binding to the hydrophobic groove of anti-apoptotic pro-
teins, subsequently displacing BH3-only proteins to induce
apoptosis [7]. A peptide derived from Bim BH3 domain,
named 072RB was reported to possess anticancer activity
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Table 1. Various types of ACPs with their mechanisms.
ACPs Cells and Tumor Xeno-|Mode of Action References
grafts*
072RB B-CLL, AML* Induction of apoptosis by downregulating Bcl-XL and Mcl-1. [18]
NuBCP-9 ZR-75-1 Dislodge BH4 domain of Bcl-2 which blocked the antiapoptotic activity of Bel-XL. [19]
Antp-LP4 PBMCs Induction of apoptosis by displacing hexokinase and Bcl-2 from VDACI and VDACI1|[6]
oligomerization.
Hexokinase  II-Derived|Hela Induction of apoptosis by competitive disruption of hexokinase II-VDAC interaction. ([20]
peptide
Poropeptide SK-MEL-28 Mitochondrial depolarization via direct mitochondrial outer membrane permeabiliza-|[9]
Bax[106-134] tion .
DIM-LF11-318 A375 Membrane lysis via hydrophobic and electrostatic interaction with phosphatidylserine. [[21]
Pardaxin HT1080 Pore formation via barrel-stave model in phosphatidylcholine membrane; Bilayer dis-|[22-26]
ruption via carpet-like model in phosphatidylglycerol membrane.
Kalata B1 and Kalata B2 [HeLa, MM96L Toroidal pore formation in phosphatidylethanolamine membrane. [27-29]
P28 Mel-29, MEL-23, MEL-6,|Induction of G2/M phase cell cycle arrest via inhibition of COP1 binding to p53. [5, 30, 31]
MCF-7, MDA-MB-231*
BmKKx2 K562 Enhanced apoptosis by blocking hERG channels. [32]
Ergtoxin SKOV-3 Cell proliferation inhibition and cell cycle arrest by blocking hERG channels. [33]
SOR-13, SOR-C27 SKOV-3* Reduction of tumor growth via inhibition of TRPV6. [34, 35]
Tvl HCC Inhibition of cell proliferation and induction of calcium-dependent apoptosis via inhibi-|[36]
tion of TRPV6 and TRPC6.
Chlorotoxin STTG1,U251-MG Reduction of cell migration by blocking CLC-3 channel. [4, 37, 38]

in vitro and in vivo. Although the exact mechanism of action
is not clear, the anticancer activity was exerted through the
activation of apoptosis via downregulation of Bcl-XL and
Mcl-1 in leukemia cells [18]. Furthermore, a B¢l-2-convert-
ing short peptide derived from nuclear receptor Nur77,
NuBCP-9 was found to dislodge BH-4 domain of Bcl-2 to
expose its BH-3 domain, eventually blocking anti-apoptotic
effect of Bcl-XL and Bax/Bak activation in cancer cells
[19]. Encapsulation of NuBCP-9 into nanoparticles (NPs)
comprising diblock poly(lactic acid)-poly(ethylene glycol)
(PLA-PEG) copolymers or tetrablock PLA-PEG-poly(propy-
lene)-PEG (PLA-PEG-PPG-PEG) copolymers were de-
signed by Kumar et al. [44]. In vitro administration of
NuBCP-9/NPs induced apoptosis in human breast cancer (M-
CF-7) and liver cancer (HepG2) cells. In vivo, complete re-
gression of Erlich mammary adenocarcinoma and prolonged
survival of NuBCP-9/NPs-treated mice were demonstrated.
Other than overexpressing anti-apoptotic proteins, cancer
cells can circumvent apoptosis by overexpressing hexoki-
nase, a key mitochondria-bound glycolytic enzyme involved
in aerobic glycolysis to promote tumorigenesis via interac-
tion with the most abundant isoform of voltage-dependent
anion channel (VDAC), called VDACI [6, 45]. VDACI-
based cell-penetrating peptide (Antp-LP4), designed by Prez-
ma et al. [6] was found to =induce displacement of hexoki-
nase and Bcl-2 from VDACI of B-cell chronic lymphocytic
leukaemia cells (CLL) subsequently resulting in the loss of
mitochondrial membrane potential, depletion of ATP,
VDACI oligomerization, and release of cytochrome c, fol-
lowed by cell death. Similar results was shown in a study by
Woldetsadik et al. [20], whereby competitive disruption of
hexokinase II-VDAC interaction indeed resulted in apoptot-
ic cell death following treatment with penetration-accelerat-

ing sequence-coupled hexokinase-II derived peptide in
HeLa cells. Collectively, manipulation of the interaction be-
tween hexokinase and VDAC may be an avenue to potenti-
ate the anticancer effects of ACPs.

3. MEMBRANE DISRUPTION

In some cases, apoptosis signalling pathways of cancer
cells are compromised, resulting in resistance due to muta-
tion and deficiency of pro-apoptotic proteins as tumor metas-
tasize, thus rendering them ineffective as an inducer of apop-
tosis [46]. In order to reverse drug resistance and restore
apoptosis, mechanisms of anticancer drugs mainly perturb-
ing the membrane integrity are attracting attention as resis-
tance is less likely to occur [47]. In a landmark study con-
ducted by Valero ef al. [9], found that the membrane inser-
tion and pore-forming domain of Bax, called poropeptide
Bax[106-134] specifically targeted and permeabilized mito-
chondrial outer membrane (MOM) without complex structu-
ral reorganization, triggering mitochondrial depolarization,
release of cytochrome ¢ and caspase-dependent apoptosis in
cancer cells.

Furthermore, extensive studies have indicated that cation-
ic bioactive peptides kill cancer cells by disrupting the in-
tegrity of the plasma membrane, mainly targeting the exter-
nalized negatively charged phosphatidylserine (PS) in most
cancer cells including breast, skin, pancreatic, and skin [48].
A peptide derived from human cationic host defence peptide
lactoferricin, DIM-LF11-318 recently showed fast killing
properties by disrupting the membrane of melanoma cells ex-
posing higher PS-level on the outer membrane leaflet in com-
parison with those exposing lesser PS [21]. Results from ear-
lier study conducted by Wang et al. [49], confirmed that PS
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Figure (1). Schematic of anticancer mechanisms of various ACPs. 4 higher resolution / colour version of this figure is available in the elec-

tronic copy of the article.

not only provided sites for electrostatic interaction for cation-
ic peptide with a binding ratio of 1:5 (peptide:PS) but also
promoted that formation of a-helical conformation, which
enhanced their membranolytic activity.

Membrane disruption induced by ACPs mainly occur in
three modes: carpet-like, barrel-stave and toroidal pore mod-
el [50]. It is assumed that the peptides diffused laterally
through the lipid bilayers upon interaction with the lipid
head groups mediated by electrostatic properties, followed
by self-assembly of peptides on the membrane surface and
pore formation upon insertion [51]. In the barrel-stave mod-
el, peptides attach parallel to the plane of lipid bilayer at low
peptide-lipid (P/L) molar ratio and insert perpendicularly to
the cell membrane at high P/L ratio, thus lining the pore lu-
men parallel to the phospholipid chains with the polar face
of peptides arranged towards the pore interior while the non-
polar face arranged towards hydrophobic core of the bilayer
[52, 53]. In toroidal-pore model, instead of parallel orienta-
tion with phospholipid chains, peptides form pore by induc-

ing local membrane curvature where the phospholipids bend
inwards, forming toroidal-shaped pore where the phospho-
lipid head groups line the pore lumen together with the pep-
tides [54]. In carpet-like model, peptide oriented parallel to
the plane of lipid bilayer to cover the membrane surface in a
carpet-like format, resulting in unfavourable side chain inter-
actions [53]. Upon exceeding a particular threshold, the
membrane collapses in a surfactant-like manner into mi-
celles [50]. Various studies revealed differences in the orien-
tation behaviour of ACPs in different membrane disruption
mechanisms which are dependent on the hydrophobic tail
and headgroup types of the bilayer. Pardaxin, a fish antimi-
crobial peptide was reported to induce membrane injury to
human fibrosarcoma (HT1080) cells [22]. Mechanistic study
suggested that in the presence of phosphatidylglycerol (PG),
pardaxin adopted a parallel orientation, indicating a carpet--
like bilayer disruption model [24, 25]. Alternatively, par-
daxin disrupted the membrane composing phosphatidylcho-
line (PC) via barrel stave mechanism, as evidenced by its
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transmembrane orientation [23, 25, 26]. Furthermore, mem-
brane-active and pore-forming cyclotides Kalata B1 and
Kalata B2 were shown to bind specifically with phos-
phatidylethanolamine (PE)-containing membranes rather
than those without PE [27-29, 55]. The interaction then re-
sulted in the alteration of membrane packing constraints, sub-
sequently opened or increased the existing membrane de-
fects size, leading to the formation of pores [27].

4. P53-MEDIATED GROWTH INHIBITION PATH-
WAY

In healthy cells, the level of p53 is kept low due to rapid
proteasomal degradation by ubiquitin E3 ligases such as con-
stitutively photomorphogenic 1 (COP1) [56]. In response to
various cellular stress, p53 is activated to induce protective
reactions such as DNA repair, cell cycle arrest or apoptosis
[57]. However, the oncosuppressive function of p53 is inacti-
vated in most human cancer cells due to aberrations of
ubiquitin-proteasome pathway or mutations [58]. A frag-
ment of AMP/ACP azurin, p28 inheriting the tumor suppres-
sor activity of Azurin was reported and a number of patents
(W02010080506, W0O2010078042, US2010087377 have
been granted for its anticancer activity [59]. This peptide de-
monstrated efficacy against human melanoma (MEL-23 and
-29) and breast cancer (MCF-7, MDD2 and MDA-MB-231)
cells in vitro and in MDA-MB-231 xenograph in vivo [5].
With efficient cellular penetration ability, binding of p28
with the L1 loop of DNA-binding domain of p53 inhibited
p53 degradation signalling pathway by blocking interaction
between p53 and COP1, which in turn resulted in the post--
translational increase of p53 levels that induces G2/M phase
cell cycle arrest [30, 31, 60]. Nonetheless, the contributing
factors for this favourable trait is still unspecified. The phase
I clinical study indicated that p28 was well tolerated in 15 pa-
tients with advanced, refractory and recurrent solid tumors
without significant side effects and immunogenicity report-
ed, which is in consistent with animal models [61]. Three pa-
tients are alive 25, 32 and 36 months from the start of treat-
ment. Encouraged by the results, Pediatric Brain Tumor Con-
sortium enrolled in the phase I clinical trial involving 18 chil-
dren with recurrent or progressive central nervous system
(CNS) tumors [62]. The results highlighted that p28 was
safe for children with progressive CNS tumors. However,
p28 lacked efficacy against paediatric CNS tumors as a sin-
gle cytostatic agent, thus encouraged further combinatorial
strategies.

5.I0ON CHANNELS

Ion channels are generally membrane-bound signalling
proteins residing in plasma membrane or membranes of or-
ganelles, including mitochondria, endoplasmic reticulum
and nucleus that mediate the transmembrane transport of
metabolites and ions. In normal cells, ion channels regulate
cellular homeostasis in response to changing physiological
demands by controlling the transmembrane transport of ions
and metabolites, membrane potentials and cell volume (os-
moregulation) to modulate cell proliferation [63, 64]. Cer-
tain ion channels are aberrantly expressed in human cancers
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which participate in the neoplastic progression, invasion and
metastasis of tumors [65] such as potassium (Kv) channels
[66], chloride ion (CI) channels [67], calcium ion (Ca®")
channels [64] including transient receptor potential (TRP)
channels [68].

5.1. K’ Channel

Voltage-gated K' (Kv) channels are the most complex
class of voltage-gated ion channels encoded by 40 genes be-
longing to 12 subfamilies (Kv1-Kv12), where their activities
are tightly regulated by the changes in the cell’s membrane
potential [64]. Overexpression of Kv channels have been
shown to be implicated in the transition of metastasis by in-
ducing integrin-dependent intracellular signalling pathways
[69] and upregulating vascular endothelial growth factor
(VEGF) [70]. Human ether a-gogo-related gene (hERG) po-
tassium channel, also known as Kv11.1 is upregulated in a
number of cancer cells such as breast [71] and pancreatic
[72], whereas no remarkable hERG protein expression is ob-
served in non-cancerous cells [32]. In these, hERG con-
trolled the pro-migratory phenotype in leukemic cells
through the formation of macromolecular complex by re-
cruiting growth factor receptors [73], integrin subunits [69],
or chemokines [74]. It was found that blocking the hERG
channels was able to inhibit the proliferation of leukemic
cells [75-77]. A 36-residue peptide isolated from scorpion
Buthus martensii Karsch, BmKKx2 is a potent hERG chan-
nel blocker, where in vitro investigation performed in hu-
man myelogenous leukemia (K562) cells demonstrated
promising results. Specifically, blocking the hERG channels
not only reduced cell proliferation, but also reduced the intra-
cellular Ca®* influx, thereby enhanced K562 cells apoptosis
upon Ara-C induction [32]. Earlier experimental evidence
confirmed that scorpion venom peptide, Ergtoxin inhibited
the proliferation of SKOV-3 and facilitated cell cycle arrest
by blocking hERG channels [33]. However, prolonged
hERG channel activation impaired the proliferative activity
of mammary gland adenocarcinoma-derived cells by induc-
ing a cell senescence program [78]. Taken together, whether
the activation or inhibition of over-expressed potassium
channel in cancer cells is tumorigenic or tumor suppressive
is highly dependent on the context.

5.2. Ca* Channel

Calcium ions (Ca’") are cellular messengers that regu-
lates majority of cellular reactions, whereby malfunction of
calcium homeostasis initiates calcium-sensitive pathways
promoting tumor cell migration and metastasis [68]. Ca®
homeostasis is tightly regulated by TRP channels, particular-
ly TRP vanilloid 5 (TRPV5) and 6 (TRPV6), where upregu-
lation of these channels augments development and progres-
sion of colon, thyroid, breast, and prostate cancer [35]. Deri-
vatives of novel paralytic peptide Soricidin derived from Bla-
rina brevicauda, SOR-13 and SOR-C27 (US patent,
US20160206694A1) were proven to be a specific inhibitor
of TRPV6 which inhibited Ca’" uptake, thereby inhibited the
activation of nuclear factor of activated T-cell (NFAT) tran-
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scription factor [79] and reduced viability of various cancer
cells overexpressing TRPV6 effectively [35]. In vivo fluores-
cence imaging and MRI images demonstrated that both SOR
peptides had great bioaccumulation and tumor homing abili-
ty in mouse-bearing human ovarian carcinoma (SKOV-3)
xenograft [35]. Moreover, clinical trial for the use of SOR-
C13 in the treatment of late-stage solid tumor cancer high-
lighted that majority of the patients did not encounter signifi-
cant toxicities, with two stage-IV pancreatic cancer patients
showing tumor size reduction [34]. Similar results were ob-
tained in hepatocellular carcinoma (HCC) cells overexpress-
ing TRPV6 and TRPC6 treated with Tvl, a venom peptide
isolated from predatory marine snail Terebra variegata. The
proliferation of HCC cells were significantly inhibited upon
inhibition of TRPV6 and TRP canonical 6 (TRPC6) chan-
nels by Tv1 peptide, thus leading to proliferation inhibition
and calcium-dependent apoptosis [36]. Potent inhibition of
tumor growth without systemic toxicity was also reported,
justifying in vitro efficacy.

5.3. CI Channel

Chloride ion (CI') channels play a pivotal role in facilitat-
ing the transmembrane transport of Cl" and regulating the
pH, membrane potential, and cell volume, where the latter is
responsible for the migration and infiltration of cancer cells
[64]. The voltage-dependent C1 channel CLC family, partic-
ularly CLC-3 have been implicated in a glioma tumors [67].
This channel is not abundantly expressed in normal cells nor
tumors of nonglial origin. In malignant glioma cells, CI
movement across the plasma membrane upon activation of
CLC channels to facilitate the changes in cell volume and
shape which are required for them to invade and migrate
through the extremely narrow extracellular spaces of the
brain, thereby forming distant satellite tumors [80]. Hence,
inhibition of CLC channels preventing Cl flux may limit the
extend of glioma cell shape alteration, and thus impedes glio-
ma cell invasion and migration. This model is confirmed by
various experimental evidences reporting anti-invasive ef-
fects of chlorotoxin, a peptide derived from venom of scorpi-
on Leiurus quinquestriatus, which effectively reduced glio-
ma cell migration by blocking highly expressed CLC-3 chan-
nel [4, 37, 38]. Radioactive iodine "*'I-labelled chlorotoxin
("'I-TM-601) has completed phase I and II clinical trials to
treat glioblastomas and anaplastic astrocytomas [81, 82],
and allowed by FDA to proceed to phase III as no toxicity
and death were reported upon local administration [83]. Due
to its specific binding, chlorotoxin has been used to brain
gliomas delineation to measure tumor progression and im-
prove resection of malignancies [84]. Peptides designed to
block the ion channels specifically over-expressed by glio-
ma might be a worthy therapeutic strategy in the treatment
of highly aggressive glioblastoma.

CONCLUSION

Although the discovery of thousands of natural peptides
leading to the millions of synthetic peptides have been found
so far, only a few of them are being tested in clinical trials
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or show fairly good clinical efficacy. Hence, the current un-
derstanding of the cancer cells’ abnormal metabolic pathway
and the mode of action of ACPs are vital to increase the
probability of peptide-based drugs advancing to clinical use.
ACPs not only could act as a direct or indirect inducer of
apoptosis but can also inhibit the proliferation and migration
of cancer cells by targeting the tumor specific ion channels
and membrane phospholipids. Additionally, inhibition of
p53 ubiquitination and proteasomal degradation mediated by
COP1 could also be a powerful strategy in the fight against
cancer.

LIST OF ABBREVIATION

B-CLL = B-cell chronic lymphocytic leukemia cell;

AML = acute myeloid leukemia cells;

ZR-75-1 = MCF-7, MDA-MB-231, human breast cancer cell
lines;

PBMC = peripheral blood lymphocytes;

Hela = human cervical cancer cell line;

SK-MEL-28 = A375, MMY96L, MEL29, MEL-23, MEL-6, hu-
man melanoma cell lines;

HT1080 = human fibrosarcoma cells;

K562 = human myelogenic leukemia cell line;

SKOV-3 = human ovarian cancer cell line;

HCC = hepatocellular carcinoma;

STTG1,U251-MG = human glioma cell lines.
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