Cocoa Polyphenol-Rich Extract Enhances the Expression Levels of PPAR-γ in the Skeletal Muscle and Adipose Tissue of Obese-Diabetic Rats Fed a High-Fat Diet

1Farhana Aminuddin, 1Faisal Ali, 1,2Amin Ismail, 3Chong Pei Pei and 4Muhajir Hamid
1Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Research Center of Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Department of Microbiology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

ABSTRACT
Cocoa, the fruit of Theobroma cacao plant is traditionally used in the folk medicine as a pharmaceutical for blood pressure reduction and cardiovascular diseases prevention. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) is widely known to improve insulin sensitivity and is thereby being used as a major drug target for the treatment of type 2 diabetes mellitus. The present study investigated the anti-diabetic/anti-obesity effects of cocoa polyphenol-rich extract (CoPE) using obese-diabetic rats (Sprague Dawley rats). Sprague Dawley rats received either normal diet, high-fat diet or high-fat diet with additional cocoa polyphenols for 8 weeks. After the end of the treatment, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein levels of PPARγ were measured in skeletal muscle and white adipose tissue. Compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for CoPE-treated groups. Furthermore, compared to the high-fat diet group, the PPARγ mRNA level was significantly higher in both skeletal muscle and white adipose tissue for CoPE groups. Protein expression of PPARγ in CoPE groups was also significantly higher compared to the high-fat diet group. In conclusion, the anti-diabetic mechanism of actions of CoPE along with metformin hypoglycemic drug is partially attributed to increase expression of PPARγ in skeletal muscle and adipose tissue. These results suggest that CoPE could be a useful phytomedicine agent for alleviating insulin resistance.

Key words: Cocoa polyphenol extract, insulin resistance, phytopharmacological actions, metformin, PPAR-γ gene expression, PPAR-γ protein expression level

INTRODUCTION
Diabetes mellitus is a metabolic disorder with multiple causes and etiology that is characterized by hyperglycemia and insulin resistance. Type 2 diabetes is globally increased and comprises over 90% of diabetes cases (Gershell, 2005; Wild et al., 2004). Diabetic patients frequently demand to use natural medicines with anti-diabetic properties due to the side effects associated with the use of insulin and conventional drugs. Utilization of medicinal plants for the management and treatment of diabetes mellitus dates back to the Ebers papyrus from approximately 1550 B.C (Holman and Turner, 1991; Rao et al., 1997).

Scientific research has proven the efficacy of many of medicinal plants, some of which are remarkably effective (Grover et al., 2002). Theobroma cacao is a small evergreen

www.ansinet.com