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Abstract—Solar panels can have short lifespan and 

significantly lower efficiency with the occurrence of various 

faults. Currently, most fault detection methods suffer from cost-

ineffectiveness due to either requiring expensive equipment, 

such as a thermal camera or lack of information on the source 

of the faults. Most of the research of using You Only Look Once 

(YOLO) to detect faults in solar panels revolves around thermal 

images too. This paper aims to propose an alternative method to 

detect faults (primarily cracks and soiling) in solar panels by 

applying YOLOv7 on Red, Green, Blue (RGB) images captured 

by an Unmanned Aerial Vehicle (UAV). To further improve the 

performance of this scheme, this paper will focus on applying 

various techniques to improve the accuracy and training time of 

the model, which include gray scale conversion, data 

augmentation and change of Gradient Descent (GD) optimizer. 

Based on preliminary results, it was found that the combination 

of gray scale conversion and data augmentation leads to an 

accuracy of 95.91% while Nadam stands out as the best 

optimizer because it reduces required training time for 

convergence by 75 epochs.  

Keywords— solar panels, YOLO, cracks, soiling, UAV, 

RGB camera, thermal camera 

I. INTRODUCTION  

In the pursuit of a future powered by cleaner energy, solar, 
hydroelectric power and wind energy are all considered to be 
viable candidates in replacing the conventional fuel-based 
energy generation methods [1]. Out of all these prospects, 
solar energy is deemed to have the most potential due to the 
advancement in solar Photovoltaic (PV) cells which render 
solar panels to become an energy harvester that is much 
affordable and less energy-intensive to be manufactured 
compared to its counterparts [2]. This is evident by the 
research result which states that worldwide installed capacity 
of PV technology increases from 40,334 MW to 709,674 MW 
in the last decade [3].  Despite being the spearhead that propels 
the growth of clean energy, solar energy still has its own flaws, 
particularly with the solar panels. On average, solar panel has 
an expected lifespan of 25 to 30 years [4]. However, the 
lifespan can be easily cut short with the occurrence of various 
faults. Apart from that, the fault of one solar panel can 
essentially diminish the output of an entire string of solar 
panels. Therefore, keeping track of the status of a solar panel 
is crucial in prolonging the effective lifetime of a solar panel 
and improving the power output efficiency. 

A. Faults in Solar Panels 

 In the metric of product of severity and frequency of 
occurrences, hotspots and glass breakages are among the most 
prominent faults that can occur to a solar panel with the former 
tallying up to approximately 30% and the latter being 20% in 
the last 10 years [5]. Hotspots occur when a portion of the PV 
cells are shaded. As a result, the shaded PV cells will have a 

  

(a) (b) 

Fig. 1. Examples of (a) a cracked solar panel and (b) a soiled solar panel 

decreased power output of 19% to 33% and become reverse 
biased [6]. In fact, out of all the factors, soiling, which refers 
to the accumulation of dust, algae, bird droppings or any stains 
that shield the solar panels from light exposure, is accountable 
for creating 8% to 12% of the hotspots on solar panels [6]. 

On the other hand, glass breakage is found to have 
contributed to 10% of the failures in solar panels after 2 years 
of operation and 33% of the failures after 8 years of operation 
[7]. Generally, glass breakage can be caused by temperature 
variations during operations (thermal stress), sudden impacts 
(mechanical stress) and harsh climatic condition (lightning 
and hailstorm) [6]. If the glass breakage is left unattended, it 
will lead to openings where the water vapor can moisturise the 
insulation of encapsulant layer of the PV cells and lead to 
ingression of water. Eventually, the expansion and contraction 
of water vapor can cause mechanical stress within the PV cells 
and lead to the formation of microcracks. Examples can be 
seen in Fig. 1. 

B. Fault detection using Infrared Thermography 

The research world has mostly focused on Infrared 
Thermography (IRT) to detect faults in solar panels. IRT 
works with the help of a thermal camera. By capturing images 
of solar panels, cells that suffer from hotspots will generate 
abnormal amount of heat and give temperature data that will 
be represented as bright regions in the output of IRT [6].  An 
example of a thermal image can be seen in Fig. 2. 

The research work by Cubukcu and Akanalci in 2019 
showed that they managed to detect 241 faults in solar panels 
from 19 different projects, with 25% of them being hotspots 
and 5% being broken modules using thermal cameras [8]. 
Apart from that, a FLIR thermal camera and a normal RGB 
camera were installed onto a drone to 3D model the landscape 
where the solar panels are situated at. It was argued this can 
greatly assist the fault detection and analysis in solar panels 
[9] . However, thermal cameras have lower resolution and to 
match RGB images with thermal images, the drone needs to 
fly at a lower height thus requiring longer flight time to cover 
the same area. This method can also lead to influx of huge 
amount of data and therefore deep learning framework is 
generally used to assist IRT. 

979-8-3503-5790-5/24/$31.00 ©2024 IEEE979-8-3503-5790-5/24/$31.00 ©2024 IEEE 164

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 G

re
en

 E
ne

rg
y,

 C
om

pu
tin

g 
an

d 
Su

st
ai

na
bl

e 
Te

ch
no

lo
gy

 (G
EC

O
ST

) |
 9

79
-8

-3
50

3-
57

90
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

GE
CO

ST
60

90
2.

20
24

.1
04

74
79

3

Authorized licensed use limited to: University of Malaya. Downloaded on April 01,2024 at 03:00:17 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

Fig. 2.  An example of a thermal image [8].  

C. Applications of Deep Learning Algorithms 

 In terms of computer vision, CNN is the most used type of 
neural networks. The general architecture of a CNN network 
can be seen in Fig. 3.  

 

Fig. 3. The general architecture of a CNN [1]. 

 The emergence of YOLOv1 is game changing as it is a 
CNN that completes drawing of bounding box and 
classification in one go which leads to high computational 
speed and is suitable for real-time object detection. Since then, 
YOLOv1 has evolved for 7 iterations where YOLOv8 was 
introduced in January 2023. YOLO has been incorporated 
extensively into the realm of fault detection using drones and 
IRT because of its high computational capabilities to speed up 
fault analysis from aerial imageries [10]. 

For an instance of applying deep learning frameworks in 
solar panel fault detection, an Autel camera was installed on a 
drone to capture thermal images of solar panels in a research 
work done by Terzoglu and his co-researchers in 2023 [11]. 
Then, YOLOv5 was used to detect and classify the faults.  
Additionally, Zou and Rajvee use FLIR Duo Pro R thermal 
camera on a drone to capture images of solar panels, then 
classify the panels into faulty or non-faulty using YOLOv4 
[11]. This classification is less desirable as it does not provide 
more information on the source of faults. 

 The main drawback of using thermal camera is the high 
cost of a thermal camera. As a reference, the cost of all the 
thermal camera used in the previously discussed paper are in 
the range of RM 12 881 to RM 36 499. If the drone carries the 
thermal camera encounter any accidents, the replacement for 
the thermal camera can be very costly. In addition to that, 
multiple research papers, such as [9],  [11], [13] have 
combined the use of thermal camera with normal RGB camera 
as thermal images lack information on the cause of the faults, 
which is key to creating a solution or strategy in tackling the 
faults.  

 There had been ongoing research works in using CNN 
onto images captured using standard RGB images. For an 
instance, Pa, Uddin and Kazemi managed to achieve a success 
rate of 88.6% for multi-class classification, including normal, 
shadowy, cracks and dusty using a CNN [1]. However, the 
proposed method was not tested on a drone. Additionally, 

Ahmed and his co-researchers also used YOLOv5 to detect 
faults on a dataset consisting of RGB solar panel images after 
hyperparameter tuning. However, the reasoning for the tuning 
was not explained. They managed to achieve a mean average 
precision (mAP) of 86% [14]. Aside from that, Lestary and his 
co-researchers installed iPad Pro 2020 on a drone to collect 
RGB images of solar panels. Then, via YOLOv3, the presence 
of snail’s trail (a brown line appeared on solar panels due to 
microcracks) was detected with an mAP between 78.44% to 
99.7% [15]. However, detecting only one type of fault leads 
to a limited scope. 

D. Research Contribution 

 It is undeniable that application of YOLO on RGB images 
has high potential in making the maintenance works in solar 
farms to be much cost-effective. However, this method also 
suffers from several concerns: 

• Low accuracy due to environmental factors, such as 
the brightness and exposure and camera lens jittering 

• Long training time which can make the 
hyperparameter tuning process in producing an 
accurate model to be inefficient. 

Therefore, this paper will contribute by addressing these 2 
main issues by identifying the most suitable techniques in 
training a YOLO model using the least training effort and 
return the highest possible accuracy in detecting faults in solar 
panels, primarily cracks and soiling. The techniques to be 
reviewed in this paper include gray scale conversion, data 
augmentation by adjusting brightness and exposure and a 
change of GD optimizer. 

II. RESEARCH METHODOLOGY 

A. Overview 

YOLOv7 will be implemented in this research due to its 
stability and good benchmark performance. Theoretically, 
the techniques showcased in this paper are transferable to any 
other versions of YOLO. The datasets to be used in the 
training consists of 1688 images, which are with a split of 
85%:10%:5% for training, validation, and testing. This 
dataset consists of solar panels that are either intact, soiled or 
cracked. The training of the model will be done using the 
default settings shipped together with the YOLOv7 from its 
GitHub repository. The annotation used in this training will 
be bounding boxes, which is done via LabelImg. The training 
will be run on a desktop equipped with RTX 3060 with 8GB 
memory. Since YOLO is coded using Python, the coding 
environment used in this project will be PyCharm 
Community Edition. 

B. Evaluation of the trained result 

The performance of the model can mainly be evaluated 
using a metric known as mean Average Precision (mAP), 
which mathematically can be expressed as shown in (1). 

��� � 1
� � ��	

	
�

	
�
 

 

(1) 

 
Average Precision (AP) in (1) can be derived by finding 

the area under the graph of precision against recall. mAP can 
be evaluated at different Intersection over Union (IOU), 
which can be defined as the ratio of overlapping area to the 
total area of predicted bounding box and the ground truth. 
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Generally, mAP in YOLO will be evaluated at IOU of 0.5. 
During the training process, the algorithm will keep track of 
the result that gave the best fitness level and the weight for 
that epoch will be saved as the best model. The fitness level 
of the training result is formulated as shown in (2). 

������ � ����@0.5 � 0.1� �
����@0.5: 0.95 � 0.9�  

 

(2) 

C. Gray Scale Conversion and Data Augmentation 

The 2 preprocessing steps that can potentially be used to 
improve the model’s accuracy are gray scale conversion and 
data augmentation with adjusted brightness and exposure. 
Gray scale conversion is a technique used in digital 
photography where every form of colour information is 
neglected, leaving behind only gray of different shades, with 
the brightest being white and the darkest being black. On the 
other hand, data augmentation artificially inflates the data 
size by oversampling through transformation such as 
geometric and colour transformation of original dataset to 
allow more information being extracted [16]. An example of 
a gray scale image and an augmented image can be seen in 
Fig. 4.  

  
(a) (b) 

Fig. 4. An example of (a) a gray scale image and (b) an augmented image 
with adjusted brightness and exposure. 

Roboflow will be used to help preparing the datasets 
under these 2 image processing techniques. The dataset will 
be augmented with ± 25% of exposure and brightness. The 
target improvement to be achieved using these 2 strategies are 
5% compared to the training using default YOLOv7 settings.  

D. Selection of Gradient Descent Optimizer 

The loss function in YOLO as shown in (3) is the 
summation of the deviation between predicted and ground 
truth in the aspect of bounding box (����), confidence score 
(� ��!), classification score (� "#) and accuracy when there is 

no detected object (���_��%). &��� is a constant used to skew 

the weightage or contribution of bounding box losses to be 
higher in the resultant loss while &��_��% is a constant set to 

skew weightage of no object accuracy to be lower. 
Meanwhile, � is the total number of grids in the image and ' 
is either 1 or 0 depends on whether there is any detected 
object. 

�(�� � &������� � � ��! � � "# �
&��_��% ∑  ' � �*,��_��% #*
�   

 

 

(3) 

The algorithm that is used to decrease the loss to global 
minima to improve the convergence time and model’s 
accuracy is generally known as GD Optimizer. Most of the 
popular GD optimizers used today are built as a variation or 
evolution of Stochastic Gradient Descent (SGD) which can 
be computed as shown in (4) where the weight of the current 
iteration, ,*  depends on the product of partial derivative of 
the loss function in respect to the weight of the previous 
iteration,  ∇./0,*1�2 and a learning rate, 3.  

,* � ,*1� 4 3 ∙  ∇./0,*1�2  
 

 

(4) 

Analogically, if the gradient descent is a ball rolling 
downhill to a flat surface where loss is minimum, GD 
optimizers act as a guide that helps the ball deciding on the 
path to be taken to reach the end goal. The visualization of 
the different GD optimizers with this analogy can be seen in 
Fig. 5. 

(a) (b) 

Fig. 5. The performance of different types of Gradient Descent Optimizer 

on (a) a loss contour and on (b) a saddle point [17]. 

Due to each optimizer using different algorithms, the 
convergence speed and time will therefore be different, and 
this has a direct impact on the model’s accuracy. The slower 
the training speed is, the less accurate the model will be 
unless longer training time is committed until convergence 
occurs. A preliminary selection had been made to filter out 
the currently most used and available GD optimizers in 
PyTorch Libraries (which is the framework where YOLO is 
built on) due to their obvious flaws. After analysing their 
characteristics, optimizers to be considered and experimented 
in this research work other than the default SGD optimizer 
are Adam, AdamW, Adamax and Nadam.  

III. RESULTS AND DISCUSSION 

During first round of training, the datasets will be modified 
and hence a total of 4 different variations will be tested, which 
are the original dataset (RGB), original dataset with grayscale 
conversion (GS), original dataset with brightness and 
exposure augmentation (RGB + AUG) and original dataset 
with grayscale conversion and brightness and exposure 
augmentation (GS+AUG). Through augmentation, the 
training dataset will become larger while the size of the 
validation and testing dataset remain unchanged and hence 
the split becomes 92%:6%:2%. The result for these trainings 
can be seen in Fig. 6. Overall, it can be observed that RGB 
and GS + AUG dataset perform the best with an approximate 
improvement of 3% for mAP@0.5 compared to GS and RGB 
+ AUG. 

Despite the similar accuracy between RGB and GS + 
AUG, GS + AUG shows an impressive 3.6% improvement in 
term of the accuracy for cracks as shown in Fig. 7 but 3.2% 
drop in the accuracy for the soiling detection as shown in Fig. 
8. Hence, it was suspected that the inclusion of dust in the 
soiling dataset has a significant negative impact on the 
accuracy of the model. Therefore, the model was re-trained 
with the exclusion of dust from the datasets. 

In fact, it was found that the coal dust generally leads to 
the least efficiency loss (10.27% to 13.01%) compared to bird 
droppings and solid soiling (31.25% to 86.53%) as the mass 
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of contaminants increases from 10g to 50g [18]. Additionally, 
it was also determined that rainfall is more effective against 

 
Fig. 6. Best mAP @ 0.5 of 1st round of training. 

 
Fig. 7. Best AP @ 0.5 for cracks in 1st round of training. 

 
Fig. 8. Best AP @ 0.5 for soiling in 1st round of training. 

coal dust compared to bird droppings and solid soiling where 
the latter tends to have stronger adhesion to solar panels [19]. 
Considering all these factors and given that the expected 
outcome of this research is to apply the model on aerial 
imageries captured by a drone which tends to fly at a height 
where dust is hardly observable even with human’s naked 
eyes, dust will be excluded from the scope of this research. 

Based on the results in Fig. 9, Fig. 10 and Fig. 11, 
significant improvements can be observed across all datasets. 
However, the datasets that gave the best performance are 
RGB + AUG and GS + AUG. Since both have accuracy of 
approximately 95% @ IOU of 0.5, the tiebreakers will be 

based on their convergence speed which GS + AUG is 
superior as seen in Fig. 12 where GS + AUG converged 
earlier than RGB+AUG. 

Finally, the results in Fig. 13 clearly shows that using 

different optimizers lead to similar mAP @ 0.5 in the end. 

However, Nadam stands out for reaching convergence at the 

earliest, which is as early as 25 epochs, which is a significant 

improvement compared to its other counterparts. Given that 

one epoch generally takes 2.5 minutes, saving approximately 

75 epochs compared to using SGD leads to saving training 

time of 187.5 minutes.  
 

 
Fig. 9.  Best mAP@0.5 of 2nd round of training (without dust). 

 

 
Fig. 10. Best AP @ 0.5 for cracks in 2nd round of training (without dust). 

 

 
Fig. 11. Best AP @ 0.5 for soiling in 2nd round of training (without dust). 
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Fig. 12. Convergence of different datasets in 2nd round of training (without 

dust). 

 
Fig. 13. Convergence of the training using different GD optimizers. 

IV. CONCLUSIONS AND FUTURE WORKS 

Based on the preliminary results, it can be observed that 

both gray scale conversion and data augmentation with 

adjusted brightness and exposure effectively increase the 

accuracy of the model by 3 – 4 %. On the other hand, Nadam 

stands out as the best performing GD optimizer as it reduces 

the training time down to only requiring 25 epochs which is 

equivalent to saving 187.5 minutes compared to the default 

SGD. Moving forward, the biggest issue to be tackled will be 

overfitting which potentially can be addressed via 

hyperparameter tuning of weight decay and Early Stopper. 
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