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Abstract—This paper presents the work that has been done

to derive an accurate nonlinear model for a miniature fixed-
pitch coaxial helicopter. Starting from the Newton-Euler rigid

body dynamic equations, forces and torques generated at vari-
ous parts of the UAV have been identified and formulated. The

physical meanings behind the model are clearly explained, and
the methods of identifying all the important model parameters

are also provided. The full model is verified by comparing
simulation results and actual flight tests with the NUS FeiLion

coaxial UAV. The agreement between the two is promising.

Index Terms—Nonlinear model, coaxial helicopter, micro

unmanned aerial vehicle.

I. INTRODUCTION

To date, the advancement in small yet sophisticated elec-

tronics such as microprocessors and MEMS-based sensors

has driven the development of the unmanned aerial vehicle

(UAV) to a brand-new era. Many researchers have changed

their motivation from developing large outdoor UAVs to

discovering the potential of miniature indoor UAVs. Interest-

ing platforms, such as flapping-wing, coaxial and quad-rotor

UAVs, have been constructed for indoor tasks due to their

small size and adequate maneuverability.

In the past three years, the UAV research team from the

National University of Singapore (NUS) has been developing

miniature indoor UAVs by adopting the coaxial configura-

tion. The coaxial configuration provides several advantages

over the other types of platforms, summarized as follows:

1) It is relatively stable due to the damping effect intro-

duced by a stabilizer bar [1];

2) It is proven to be more power efficient as compared to

the single-rotor or quad-rotor configurations [2];

3) It has higher maximum forward speed than a single-

rotor helicopter since it always has a pair of advancing

and retreating blades, creating a symmetric lift in

forward flight [3];

4) It has higher payload to dimension ratio than all the

other configurations.

In order to achieve high-performance autonomous control,

an efficient and robust feedback control law needs to be

designed. This makes a precise model of the UAV indispens-

able. A comprehensive guide to identify the nonlinear model

of miniature single-rotor helicopter has been described in the

works by Mettler [4] and Cai et al [5]. There are, however,
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significant mechanical differences between the single-rotor

and coaxial configurations, which make the described model

inapplicable to the latter.

A major difference between the two is that the coaxial

platform consists of two concentric rotors rotating in opposite

directions, while both rotors must take into account of the

induced velocity caused by one another. Such relationship is

described in [6]. A detailed study of the wake dynamics of

the two rotors is also documented in [7].

Another specialty of miniature coaxial helicopter is the

stabilizer bar attached to the top rotor hub, which passively

stabilizes the helicopter. It, however, causes strong influences

to the rotor dynamics especially to the fixed-pitch coaxial

configuration as the upper rotor is not linked to any servo. As

a result, the cyclic pitch control of the upper rotor is solely

induced by the stabilizer bar. The stabilizer bar dynamics

is commonly modeled as a first order lag system [1]. In

the works shown in [1] and [8], the tip-path-plane (TPP)

dynamics is separated into the upper and lower portion,

where only the lower TPP is controlled by the servo inputs.

In a few recent works on the modeling of miniature coaxial

helicopter, although fairly complete nonlinear or linear mod-

els are obtained, the works lack intuitive explanation of the

model formulation. Moreover, their methods of parameter

identification are not comprehensive enough. For example

in [9], the helicopter dynamics were treated as a black box,

while the whole system is vaguely identified using the CIFER

(Comprehensive Identification from FrEquency Responses)

toolkit. To complement the existing work, this paper presents

the detailed derivation of the nonlinear model for a fixed-

pitch coaxial helicopter, together with experimental methods

used to identify the key parameters of the model.

The content of this paper is organized as follows: Section

II briefly describes the working principles of a fixed-pitch

coaxial helicopter and provides an overview of the model

structure. Next, Section III gives the detailed formulation of

the nonlinear model of the platform, together with parameter

identification methods. Section IV verifies the derived model

by comparing simulation results with the actual flight test

data. Lastly, concluding remarks based on all the presented

work are made in Section V.

II. BASIC WORKING PRINCIPLE AND MODEL OVERVIEW

A few miniature UAVs, codenamed PetiteLion [10],

KingLion [11] and FeiLion [12] (see Fig. 1) have been

developed by the NUS UAV research team for various indoor

navigation projects. These UAVs adopt the Esky Lama series

coaxial helicopters as their bare platforms. The nonlinear

model derived in this paper is applicable to all these UAVs,
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Fig. 1. From left to right: PetiteLion, KingLion, FeiLion
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Fig. 2. Overview of model structure

while the parameters identified were based on the latest

platform – FeiLion.

For a fixed-pitch coaxial helicopter, the collective pitch

of the rotor blades cannot be changed. Heave and yaw

motion of the helicopter can only be achieved by varying

the rotational speed of the rotors, which are controlled by

two separate motors. Generally, the summation of the motor

speeds determines the helicopter vertical motion, while the

difference of the two determines the yaw motion. Rolling

and pitching are accomplished by introducing a slanted

orientation of the swashplate, which is controlled by the

aileron and elevator servos. In this way, a tilted flapping of

the rotor blades can be induced, and the corresponding thrust

generated becomes non-vertical.

An overview of the model structure is shown in Fig. 2.

δail, δele, δthr and δrud are the aileron, elevator, throttle and

rudder inputs to the whole system. State variables can be

found at the right side of the figure. From the inputs to the

state variables, there are numerous blocks representing all

the sub-systems involved. In the next section of this paper,

mechanisms in all these blocks will be explained in detail.

III. MODEL FORMULATION AND PARAMETER

IDENTIFICATION

A. Coordinate systems and rigid-body dynamics

As a common practice of aeronautic analysis, two main

coordinate frames will be used in this paper. One is the

North-East-Down (NED) frame and the other is the body

frame. While the NED frame is stationary with respect to a

static observer on the ground, the body frame is placed at

the Center of Gravity (CG) of the coaxial helicopter, where

its origin and orientation move together with the helicopter

fuselage (see Fig. 3). To obtain the relationship between the

NED-frame position and the body-frame velocity, one has

Fig. 3. Coordinate frames and various forces and torques

the following well-known navigation equation:




ẋ

ẏ
ż



 =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ









u

v
w



 ,

(1)

where x, y, z are the NED-frame position components of

the helicopter and u, v, w are the body-frame velocity

components. φ, θ, ψ are the conventional roll, pitch, yaw

angles of the helicopter fuselage and s∗, c∗ denote sin(∗),
cos(∗) respectively. It is also critical to point out that the

Euler angle derivatives, φ̇, θ̇, ψ̇, are not orthogonal to each

other. They are related to the body frame angular rates, p, q,

r, by the following kinematic equation:




φ̇

θ̇

ψ̇



 =





1 sφsθ/cθ cφsθ/cθ
0 cφ −sφ

0 sφ/cθ cφ/cθ









p
q
r



 . (2)

Note that the above equation has singularity at θ = 90◦. If

full-envelope flight is required, a quaternion representation

is recommended in literature. However, since the coaxial

helicopter will be flying at near-hover condition for all future

missions, it is adequate to use the above equation.

By treating the whole coaxial platform as a rigid mass,

the 6 Degrees-of-Freedom (DoF) motion can be described

by the Newton-Euler equations:




u̇
v̇
ẇ



 =
1

m





Fx

Fy

Fz



 −





p
q
r



 ×





u
v
w



 , (3)





ṗ
q̇
ṙ



 = J−1











Mx

My

Mz



 −





p
q
r



 × J





p
q
r











, (4)

where Fx, Fy, Fz are projections of the net force, F, onto the

body-frame x-, y-, z-axis, and Mx, My, Mz are projections

of the net torque, M, onto the body-frame x-, y-, z-axis.

The compositions of F and M come from various parts of

the coaxial helicopter and will be explained in detail later.

The total mass of the platform, m, can be easily measured,

while J is the moment of inertia of the platform, which is

in the form of

J =





Jxx −Jxy −Jxz

−Jxy Jyy −Jyz

−Jxz −Jyz Jzz



.
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Fig. 4. The trifilar pendulum method

Since the coaxial helicopter being modeled is almost sym-

metric in both longitudinal and lateral directions, Jxy, Jxz,

Jyz are extremely small and can be assumed to be zero. Jxx,

Jyy, Jzz can be measured by the trifilar pendulum method

proposed in [13]. The experimental setup is shown in Fig. 4.

In this experiment, the coaxial platform is suspended by three

flexible strings with equal length l. The horizontal distances

between the attached points and the CG are l1, l2 and l3
respectively. One can slightly twist and release the platform

around the z-axis and record the oscillation period tl. The

moment of inertia is then given by:

Jzz =
mgl1l2l3t

2

l

4π2l
·

l1 sinα1 + l2 sin α2 + l3 sinα3

l2l3 sin α1 + l1l3 sin α2 + l1l2 sinα3

, (5)

where α1, α2 and α3 are the angles denoted in Fig. 4. Similar

experiments can be done to obtain the moment of inertia

around the other two axes.

B. Force and Torque Composition

As mentioned in the previous sub-section, force and torque

acting on the coaxial helicopter come from various mechan-

ical parts. First of all, the helicopter weight exerts a force

of mg in the NED-frame z-axis. After converting it to the

body frame, the vector is shown as the second term on the

right hand side of (6).

Next, when the rotor blades spin, they generate thrusts,
~Ti (i = up, dw) in the direction perpendicular to their

respective TPP. When the upper and lower TPPs deviate from

their default orientation, the thrust vectors no longer pass

through the CG of the helicopter, thus creating rotational

torque. The torque vectors caused by the rotor thrusts can

be calculated by ~lup × ~Tup and ~ldw × ~Tdw, where ~lup and
~ldw are the displacement vectors from helicopter CG to the

upper rotor hub and the lower rotor hub respectively. The

deviation of the TPP can be described by the longitudinal

flapping angle ai and the lateral flapping angle bi. The thrust

decomposition to the body-frame axes can be approximated

by the second equation in (8). Non-zero ai and bi also

directly result in flapping torque on the rotor hub. This torque

can be simplified as the second term on the right hand side

of (7), where Kβ is the effective spring constant and it has

the same value for both the upper and lower rotors.

Furthermore, the rotation of the rotors creates the drag

torque, ~Qup and ~Qdw, around the body-frame z-axis. When

the coaxial helicopter hovers without yaw motion, the two

torques have the same magnitude, thus canceling each other.

Else, if the net drag torque is non-zero, yaw acceleration

is generated. In addition, the change of rotational speeds

of the rotors also generate the so-called reaction torques on

the helicopter body (denoted by Qr,up and Qr,dw). They are

described in (10), where Jup and Jdw are the moment of

inertia of the upper rotor (with stabilizer bar) and the lower

rotor with respect to the rotor shaft. They can be calculated

by measuring the mass and dimension of the rotor blades

and stabilizer bar and assuming a regular geometric shape.

Last but not least, when the helicopter moves in air,

its fuselage experiences drag forces, Xfus, Yfus, Zfus, due

to air resistance. Equation (6) and (7) have summarized

all the forces and torques mentioned above, with (8)–(10)

explaining how to evaluate the individual terms:




Fx

Fy

Fz



 =
∑

~Ti +mg





−sθ

sφcθ
cφcθ



 +





Xfus

Yfus

Zfus



 , (6)





Mx

My

Mz



 =
∑

~li × ~Ti +
∑

Kβ





sinai

sin bi
0





+
∑

~Qd,i +
∑

~Qr,i , (7)

~li = |~li|





0
0
−1



 , ~Ti = |~Ti|





− sin ai

sin bi
− cos ai cos bi



 , (8)

~Qd,up = |~Qd,up|





0
0
1



 , ~Qd,dw = |~Qd,dw|





0
0
−1



 , (9)

~Qr,up = JupΩ̇up





0
0
1



 , ~Qr,dw = JdwΩ̇dw





0
0
−1



 . (10)

C. Thrust and Torque from Rotors

In this sub-section, the magnitude of the rotor thrust and

drag torque, |~Ti| and |~Qd,i|, will be investigated. According

to the aerodynamic actuator disk theory [14], the magnitude

of thrust generated by the rotors can be formulated as

follows:

|~Ti| = ρCT,iA(ΩiR)2, (11)

where ρ is the density of air, CT,i is the lift coefficient, A
is the rotor disk area, Ωi is the rotational speed of the rotor

and R is the rotor blade length. Since this is a fixed-pitch

coaxial helicopter, CT,i, like the other parameters in (11), is

constant. The only variable is Ωi. Hence, the equation can

be simplified to:

|~Ti| = kT,iΩ
2

i , (12)
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Fig. 5. Setup to investigate relation between thrust / torque and rotor speed

where kT,i is an overall thrust coefficient that needs to

be identified. Similar assumptions and formulation can be

applied to the relationship between the drag torque and the

rotational speed of the rotors:

|~Qd,i| = kQ,iΩ
2

i . (13)

To identify kT,i and kQ,i, two test bench experiments

were carried out (see Fig. 5). The main measurement sensors

include a force meter (A) and a tachometer (B). For the

thrust experiment, results are summarized in Fig. 6. There

are four lines in the plot, in which two of them (solid lines)

perfectly match. They represent the cases when only one

rotor (upper rotor or lower rotor) is rotating. The dashed

line on the top is a numerical combination of the two solid

lines, while the dash-dot line comes from actual tests with

both rotors spinning at approximately the same speed. The

gap between the two lines shows a drop in thrust efficiency

caused by aerodynamic interactions between the two rotors.

According to [15], for a coaxial helicopter operating in near-

hover condition, the induced-velocity effect of the upper rotor

to the lower rotor is significantly larger than that of the lower

rotor to the upper rotor. Thus, the loss of thrust efficiency

can be fully accounted on the lower rotor thrust coefficient.

Hence, kT,up is the gradient of the solid line and kT,dw is the

gradient difference between the dash-dot line and the solid

line.

For the torque experiment, results are summarized in Fig.

7. The solid line represents the case when only the stabilizer

bar is rotating, while the dash-dot line is for a single rotating

rotor. The dashed line is generated with the upper rotor

and the stabilizer bar spinning together. Unsurprisingly, it

matches the numerical combination of the lower two lines.

Thus, the gradient of the dashed line is kQ,up, and the

gradient of the dash-dot line is kQ,dw.

D. Rotor Tip-Path-Plane Motion

For this type of coaxial helicopter, the rotor collective pitch

is fixed. But its cyclic pitch can change. For the lower rotor,

the rotor hub is connected to the aileron and the elevator

servos via a swashplate. When the swashplate tilts, it teeters

the rotor hub and creates a cyclic pitch on the rotor. For every

cycle of rotation, the rotor blade will reach the maximum

angle of attack at a particular phase angle at which the

lift on the blade is largest. This results in the flapping of

the rotor disk. The whole mechanism is a combination of

gyroscopic precession and aerodynamic precession. For the
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case of FeiLion, if one observes the rotor blade in a slow

motion, the maximum rotor flapping occurs roughly at 45◦

lag with respect to the occurrence of maximum angle of

attack. This explains why the aileron and elevator servos

of the off-the-shelf coaxial platform are connected to the

swashplate 45◦ off the body-frame x-, y-axis. In this way, the

aileron servo mainly controls the lateral flapping of the lower

rotor, and the elevator servo mainly controls the longitudinal

flapping. However, the flapping phase lag is not exactly equal

to 45◦ (slightly larger than 45◦ from test bench observations)

due to mechanical modifications to the original RC platform

(original rotor blades have been replaced by stiffer ones

for larger payload). This results in non-negligible coupling

between the servo inputs and the lower rotor longitudinal and

lateral flapping angles. As the lower rotor does not have any

additional damping mechanism attached, its flapping process

is almost instantaneous. By assuming a first order dynamics,

the time constant can be observed via a high-speed camera.

The result turns out to be 0.0375 second, which is very

small as compared to dynamics happening in other parts

of the coaxial helicopter, thus can be neglected. Hence, the
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Fig. 8. Step response of stabilizer bar TPP motion (Left: t = 0; Middle:
t = 0.2 s; Right: t = ∞)

relationship between servo inputs and lower rotor flapping

angles can be formulated in a simple non-dynamic way:

adw = Aa,dw δele +Ab,dw δail −Aq q, (14)

bdw = Bb,dw δail + Ba,dw δele −Bp p, (15)

where δail, δele are the servo inputs normalized to [-1, 1],

Aa,dw and Bb,dw are the on-axis steady-state ratio from servo

inputs to flapping angles, and Ab,dw and Ba,dw are the off-

axis (coupling) values. The terms depending on angular rates,

p and q, come from an effect called rotor damping, which

was also considered in [16] but in a quadratic form.

For the upper rotor system, a stabilizer bar is attached to

the rotor hub, so that they teeter together. As the stabilizer bar

has large moment of inertia, it tends to remain at its original

rotating plane. Hence, at the moment when the helicopter

body tilts, the stabilizer bar TPP will remain at the level

plane, thus creating a cyclic pitch on the upper rotor which

leads to blade flapping. The torque generated by this flapping

redresses the rotational motion of the helicopter and signif-

icantly stabilizes the whole platform attitude. Similar to the

lower rotor system, the stabilizer bar is installed at 45◦ phase

lead to the rotor blade. In this way, the maximum flapping

happens at the direction that roughly counters the rotational

motion of the helicopter. Again, there is coupling between the

longitudinal and lateral channels because the flapping phase

lag is not exactly 45◦. The following equations describe the

above-mentioned dynamics:

φ̇sb =
1

τsb

(φ− φsb), (16)

θ̇sb =
1

τsb

(θ − θsb), (17)

aup = Aa,up (θsb − θ) + Ab,up (φsb − φ) − Aq q, (18)

bup = Bb,up (φsb − φ) +Ba,up (θsb − θ) − Bp p, (19)

where φsb and θsb are the roll and pitch angles of the

stabilizer bar TPP, Aa,up and Bb,up are the on-axis steady-

state ratio from the stabilizer bar teetering angles to the upper

rotor flapping angles, and Ab,up and Ba,up are the off-axis

(coupling) values. Again, the same rotor damping effects

(terms depending on p and q) are considered for the upper

rotor flapping dynamics.

For the identification of τsb, one can observe the transient

step response of the stabilizer bar TPP (see Fig. 8) by a

high-speed camera and record the time when the response

reaches 63.1% of the overall amplitude. On-axis parameters

Aa,up, Bb,up, Aa,dw and Bb,dw can be identified by measur-

ing various angles (see Fig. 9 and Fig. 10) and assuming

a linear relationship between each pair of them. For the

other coupling values and Kβ , they can be identified by

analyzing flight test data with aileron and elevator channel

perturbations (frequency sweeping). The software used for

numerical analysis is named ‘Comprehensive Identification

from FrEqency Responses’ (CIFER). It is a MATLAB-

based software developed by NASA Ames Research Cen-

ter for military based rotorcraft system identifications. By

combining and linearizing all the aforementioned equations

related to angular rate dynamics and upper rotor flapping

dynamics, one can obtain the following linear state-space

approximation:

˙













p

q

aup

bup















=

















−XdwBp,dw

Jxx
0 0

Xup

Jxx

0
−XdwAq,dw

Jyy

Xup

Jyy
0

−Ab,up −Aa,up − 1

τsb
0

−Bb,up −Ba,up 0 − 1

τsb































p

q

aup

bup















+













XdwBb,dw

Jxx

XdwBa,dw

Jxx

XdwAb,dw

Jyy

XdwAa,dw

Jyy

0 0
0 0

















δail

δele



 ,

(20)

where Xup = Tuplup + Kβ and Xdw = Tdwldw + Kβ .

By treating δail, δele as the inputs and p, q as the outputs

(all can be recorded during flight tests) and giving known

constraints and reasonable initial values, CIFER helps to

search for optimal numerical solution based on frequency

response matching. A stable result with good matching is

obtained as follows:

˙







p
q
aup

bup









=









−17.19 0 0 934.1
0 −5.360 291.3 0

0.2745 −0.49 −5 0
−0.49 −0.2745 0 −5

















p
q
aup

bup









+









−102.48 −38.08
−11.73 31.95

0 0
0 0









[

δail

δele

]

,

(21)

By comparing (20) and (21), all the remaining parameters

involved in angular rate and rotor flapping dynamics can be

identified.

E. Fuselage Drag

When the helicopter fuselage moves in air, it experiences

drag force acting on the opposite direction of the motion. For

the body-frame horizontal directions, the rotor downwash is

deflected by u and v. In the situation when u (or v) is less

than vi (the induced velocity of air at the lower rotor), the

downwash effect needs to be taken into account. Otherwise,

the downwash effect is relatively weak and can be ignored.

The fuselage in all three directions are considered as a flat

plate perpendicular to the helicopter motion, thus the drag
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Fig. 9. Left: Maximum teetering angle of the lower rotor hub; Right:
Maximum flapping angle of the lower rotor

Fig. 10. Left: Maximum teetering angle of the stabilizer bar; Right:

Maximum teetering angle of the upper rotor hub

coefficient is approximately unity. As such, the horizontal

fuselage drag forces are formulated in a quadratic form:

Xfus = −
ρ

2
Sxu · max(vi, |u|), (22)

Yfus = −
ρ

2
Syv · max(vi, |v|), (23)

vi =

√

|Tdw|

2ρπR2
, (24)

where Sx and Sy are the effective drag area along the body-

frame x- and y-axis respectively.

For the vertical direction, since the fuselage is constantly

exposed to the lower rotor downwash, it is commonly

formulated in the following form:

Zfus = −
ρ

2
Sz(w − vi)|w − vi|. (25)

However, as the lift coefficient test for identifying kT,i in

(12) was done with the presence of the fuselage (so the

term
ρ
2
Szv

2

i has already been taken into account), the above

equation needs to be compensated as:

Zfus = −
ρ

2
Szw · max(vi, |w|), (26)

where Sz is the effective drag area along the body-frame

z-axis.

In this sub-section, parameters to be identified are ρ, R,

Sx, Sy and Sz . All of them can be easily obtained by direct

measurement.

F. Motor Speed Dynamics

Two brushless DC motors are used on FeiLion. Their ro-

tational speed dynamics follows the well-known differential

equation of electro motors:

Jmotω̇ =
kmU − kmkeω

Rmot

− dω −ML, (27)

Fig. 11. Estimation of time constant of motor speed dynamics

where Jmot is the motor moment of inertia, km and ke are

the mechanical and electrical motor constants, U is the input

voltage, Rmot is the resistance of the circuit, d is the friction

coefficient, and ML is the external torque acting on the

motor shaft. Here, ML is equal to the rotor drag torque Qd,i

appeared in (13). If the helicopter operates at a near-hover

condition, everything can be approximated linearly. ML can

be assumed to be a combination of a constant trimming

value, M∗

L , and another term proportional to extra rotational

speed as compared to the trimming speed, Ω∗:

ML = M∗

L + kL(Ω − Ω∗). (28)

Further considering that the rotational speed of rotor, Ω,

and the rotational speed of the motor, ω, are perfectly

proportional by the gear ratio, the rotor speed dynamics can

be simplified to the following first-order equations:

Ω̇up =
1

τmt

(mupδup + Ω∗

up − Ωup), (29)

Ω̇dw =
1

τmt

(mdwδdw + Ω∗

dw − Ωdw), (30)

where Ω∗

up and Ω∗

dw are the trimming values of the rotor

rotational speed at hovering, τmt is the time constant of the

motor speed dynamics, and mup, mdw are the steady-state

ratio between the change of rotor speeds and the change of

motor inputs.

The identification of τmt is rather indirect. Instead of

examining the transient response of the rotor speed with

motor step input, which is very difficult to be carried out, the

transient response of the input voltage subject to the changes

of the motor Back-EMF (voltage generated by the spinning

motor) is recorded using an oscilloscope (see Fig. 11). The

time constant of the the two transient response should be the

same. mup and mdw can be identified by plotting the steady-

state relationship between the rotor speed and the motor input

(see Fig. 12). mup and mdw are the gradients of the two fitted

lines in the figure.

G. Mixer and Headlock Gyro Dynamics

In order to decouple the throttle-heave and the rudder-

yaw dynamics, the throttle and rudder signals are passed

into a hardware mixer and transformed to dual motor control
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Fig. 12. Data plot of rotor speed against motor input

signals:

δup = δthr + δ̄rud, (31)

δdw = δthr − δ̄rud. (32)

One can clearly see that when the throttle signal δthr in-

creases, inputs to both motors increase; when the rudder

signal δ̄rud increases, the input to the motor connected to the

upper rotor increases while the input to the motor connected

to the lower rotor decreases.

Note that the rudder signal in the above mixer equation

is not the original signal δrud. From δrud to δ̄rud, there is a

hardware headlock gyro which helps refine the rudder signal

and acts as a most inner-loop yaw motion stabilizer. Usually,

there is a P-I controller embedded inside the headlock gyro

and it can be formulated as follows:

ṙfb = Kaδrud − r, (33)

δ̄rud = KP(Kaδrud − r) +KIrfb, (34)

where rfb is the augmented state needed by the integral

control. Ka can be identified by performing manual hovering

turn of the helicopter with rudder input at different values.

The recorded data is shown in Table I (steady-state values).

The linear gradient of yaw rate against rudder input equals

to the value of Ka. Next, by placing the helicopter stationary

on a test bench, KP and KI can be identified by observing

the headlock gyro output signal (in Pulse Width Modulation

form) caused by a small known step inputs. The initial ratio

between the output and the input is KP/Ka, while the climb-

ing rate of the step response is KI/Ka. At this point, the full

dynamics of a coaxial helicopter have been mathematically

formulated and all important model parameters have been

identified. Table II has listed all the identified parameters for

FeiLion.

IV. MODEL VERIFICATION

In this section, a comprehensive evaluation on the fidelity

of the obtained nonlinear model is shown. Four manual flight

tests were carried out, which include:

TABLE I

YAW RATE AGAINST RUDDER INPUT: HOVERING TURN

r (rad/s) −1.50 −2.50 −2.60 −3.50
δrud (−1, 1) 0.25 0.35 0.40 0.55

TABLE II

IDENTIFIED PARAMETERS (IN SI UNITS)

ρ = 1.204 mup = 106.90 Ω∗

up = 203.38
m = 0.977 mdw = 106.45 Ω∗

dw
= 217.88

R = 0.250 τsb = 0.2 Kβ = 4.377
g = 9.781 τmt = 0.12
Sfx = 0.00835 Ka = 6.4267 Jxx = 0.0059
Sfy = 0.01310 KP = 0.667/Ka Jyy = 0.0187
Sfz = 0.01700 KI = 0.713/Ka Jzz = 0.0030
lup = 0.195 Jup = 6.8613 · 10−4 Aq = 0.0204
ldw = 0.120 Jdw = 3.2906 · 10−4 Bp = 0.0204
kT,up = 1.23 · 10−4 Aa,up = 0.4900 Aa,dw = 0.1217
kT,dw = 8.50 · 10−5 Ab,up = −0.2745 Ab,dw = −0.0450
kQ,up = 4.23 · 10−6 Ba,up = 0.2745 Ba,dw = −0.0450
kQ,dw = 3.68 · 10−6 Bb,up = 0.4900 Bb,dw = −0.1217

1) Aileron channel perturbation with FeiLion rolling left

and right,

2) Elevator channel perturbation with FeiLion pitching

forward and backward,

3) Throttle channel perturbation with FeiLion flying up

and down,

4) Rudder channel perturbation with FeiLion yawing

clockwise and anticlockwise.

In these four flight tests, the pilot was asked to try his best

to agitate only one of the four input channels. However, to

make sure the helicopter position does not drift too much

(safety needs to be ensured), minor off-axis inputs were also

issued to lightly counter the cross-couplings between the

channels. The time-domain results are shown in Fig. 13–

16. Based on the recorded inputs, the transient response of

the UAV attitudes, angular rates and body-frame velocities

are calculated by a MATLAB simulation program with the

aforementioned nonlinear mathematical model (dashed lines

in the figures). They are plotted together with the in-flight

true data obtained by the onboard sensors (solid lines in

the figures). The matching between the two is quite promis-

ing. Note that for angular rate dynamics, both the on-axis

response and off-axis response matches well. Some minor

mismatches are caused by the ignorance of high frequency

dynamics when formulating the model, especially for the

motion of rotor flapping, which is highly complicated. Other

discrepancies come from ground effect (wind disturbances)

and measurement noises present in practical flight tests. In

general, this is an accurate cross-coupled model for a fixed-

pitch coaxial UAV with low maneuvering speed.

V. CONCLUSIONS AND FUTURE WORKS

In conclusion, the nonlinear model of a fixed-pitch coaxial

UAV, FeiLion, is fully derived. The model formulation starts

from the 6-DoF rigid body dynamics. Forces and torques

from various mechanical parts of the helicopter are analyzed.

Sub-systems including rotor thrust-torque generation, rotor
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Fig. 13. Responses from aileron input perturbation
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Fig. 14. Responses from elevator input perturbation
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Fig. 15. Responses from throttle input perturbation
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Fig. 16. Responses from rudder input perturbation

TPP dynamics, fuselage drag, motor speed dynamics, mixer

and headlock gyro dynamics are discussed in detail. For each

of them, methods of obtaining the model parameters are

described and the corresponding test results are shown. The

derived model is also verified by conducting actual flight tests

and comparing simulation results with the in-flight sensor

measurements. Good matching between the two has proven

the model fidelity. In the near future, this model will be used

to design high-performance robust controllers such as LQG

or H∞ on FeiLion. After it is well stabilized in autonomous

flight tests, indoor navigation strategy based on sensors like

camera and scanning laser range finder will be implemented

in the next stage.
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