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Abstract— This paper presents a robust and efficient naviga-
tion solution for a quadrotor UAV to perform autonomous flight
in a confined but partially known indoor environment. The main
sensors used onboard of the UAV are two scanning laser range
finders and an inertial measurement unit. When the indoor
environment is structured and the coordinates of its key corner
features are known, the UAV planer position can be efficiently
calculated via the measurements from the first horizontally
scanning laser range finder. The height of the UAV with respect
to the ground can be robustly estimated by the second laser
scanner which is mounted orthogonally to the first. Besides, this
work also adopts a robust and perfect tracking control method
with integral action to enable the UAV to track any smooth 3-D
trajectories responsively and precisely. All computation is done
onboard by an ARM-based embedded computer with limited
processing power. The whole system was successfully tested
in the 2013 Singapore Amazing Flying Machine Competition
and helped the Unmanned Aircraft Systems Group from the
National University of Singapore win the overall championship
in the fully autonomous category.
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I. INTRODUCTION

The research on the topic of UAV indoor navigation has
been progressing fast in the last decade. There are two main
challenges, namely the denied reception of GPS signal and
the constraints of the indoor UAV platforms. Unlike the
conventional GPS/INS based navigation in which the UAV
global position and velocity can be directly obtained, indoor
navigation needs to get these information by sophisticated
algorithms based on relative sensing. It should be also noted
that even if the GPS signal is available, its accuracy is
not good enough for navigation in such confined space.
To make things worse, indoor UAVs are usually designed
to be small and having very limited payload. This results
in limited onboard computational power which makes the
aforementioned algorithms even harder to be implemented.

In formal terms, the method used by robots or autonomous
vehicles to build up a map within an unknown environment,
or to update a map within a known environment, while at the
same time keeping track of their current location is called the
simultaneous localization and mapping (SLAM) technique.
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Many theoretical works and practical implementations of
SLAM on ground robots [1] [2], and on UAV platforms
[3] [4] have been published in literature. However, few of
these works have considered the computation limitation on
miniature indoor UAVs and they usually exploit the unlim-
ited payload on ground robots or rely on high-bandwidth
communication to the ground control station (GCS) where
a powerful computer is running the most computationally
intensive algorithm. In consequence, some of them only work
in controlled lab environments with short and line-of-sight
communication. But for real-life applications in which ideal
communications cannot be guaranteed, the performance is
expected to be poor.

That being said, a more practical and robust navigation
strategy should only rely on the UAV onboard computers
for all necessary control and navigation functions. A few
research groups are working towards this direction. In [5],
an innovative laser-pointer-aided vision system is proposed
to release the high computational load from dense image
processing. [6] has demonstrated the possibility of real-
time visual-inertial state estimation via a 1.6 GHz Atom
computer onboard of the controlled UAV. In [7], hardware
configuration has been optimized to achieve a highly efficient
vision navigation system. The impressive work in [8] has
pushed UAV onboard intelligence to the limit where a rather
complicated indoor environment can be handled. Neverthe-
less, there must be a compromise between the complexity of
the navigation algorithm and the complexity of the navigated
environment under the current microprocessor technology.

In this work, we intend to solve the indoor navigation
problem solely onboard of a miniature UAV flying in a struc-
tured indoor environment. The algorithm can be designed
very efficient because three assumptions about the indoor
environment are made:

1) The environment can be described by sparse features,
which include corners and straight lines;

2) The line features are orthogonal to each other or off-set
by multiples of a constant angle displacement, such as
30° or 45°.

3) The coordinates of the corner features are known.

These assumptions appear to be strong but they still cover
quite a lot of real-life conditions. First of all, Assumption
1 and 2 are usually met for indoor environments in modern
man-made buildings. Moreover, the proposed algorithm will
work as long as the majority of corner and line features in
the target environment fulfills the assumptions. A few map
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noises will not affect the performance too much. Although
Assumption 3 makes the algorithm not suitable for advanced
tasks such as exploring a completely unknown environment,
missions like UAV autonomous surveillance and patrolling
are still doable if minimal information about the indoor
environment is known. Nevertheless, the main advantage
of the proposed method lies in its efficiency. With the
three assumptions met, the UAV localization algorithm can
be designed in an innovative way so that an ARM-based
embedded computer is more than enough to handle the
computation.

Furthermore, to fly in a confined indoor space, the position
of the UAV needs to be controlled extremely well so that
windows, door ways or narrow corridors can be passed
through safely. This requires a robust, responsive and zero
steady-state error performance from the controlled platform,
which leads to the application of robust and perfect tracking
(RPT) method with integral action in controlling the outer
loop of the UAV.

The content of this paper is organized as follows: Section
II briefly talks about the hardware platform and the overall
system structure. Section III contains the main contribution
of this paper, where an efficient and robust localization
algorithm based on measurements from two laser scanners
is presented. Section IV explains how to apply the RPT
control method to the outer loop of the UAV dynamic system
so that the position control performance meets the stringent
requirements from a confined environment. Section V will
provide experimental results and flight test results to justify
the performance of the overall system. Lastly, concluding
remarks will be made in Section VI.

II. HARDWARE PLATFORM AND SYSTEM OVERVIEW

Being mechanically simple and robust, quadrotor heli-
copters have been widely used as UAV platforms for re-
search purposes these days. The platform used for the work
described in this paper is also a quadrotor. Its dimensions
are 35 cm in height and 86 cm in diagonal width. Its
attitude angles are stabilized by an off-the-shelf control board
called ‘Naza-M’ from DJI. This custom-made quadrotor has
a maximum take-off weight of 2.9 kg and can fly in a near-
hover condition for about 10 minutes.

For the onboard avionics, the IG-500N inertial measure-
ment unit (IMU) from SBG Systems, is used to provide the
UAV linear accelerations, angular rates and Euler angles. A
URG-30LX scanning laser range finder from Hokuyo is used
to measure the distance from the surrounding objects in a
frontal 270° and 30 m’s range. Another URG-04LX 4 m
scanning laser range finder is mounted orthogonally to the
first and its readings can be used to calculate the altitude of
the UAV with respect to the indoor floor. Only one onboard
processor is used, namely the Gumstix Overo Fire. It is a
25-gram low-voltage ARM-based embedded computer. All
algorithms, including both control law implementation and
localization, are done on this tiny computer with computa-
tional power of merely 720 MHz. Fig. 1 shows the quadrotor
platform with the three main sensors installed.

Laser scanner 1

Laser scanner 2

Fig. 1: The custom-made quadrotor platform

Trajectory Control law UAV
generation (50 Hz) dynamics
Kalman filter IMU
(50 Hz) measurement
Partially Localization Laser scanner
known map (10 Hz) measurement

Fig. 2: Overall structure of the indoor navigation system

Fig. 2 shows the top-level structure of the overall control
and navigation structure. As the UAV moves, a localization
algorithm runs based on the measurements from two laser
scanners to obtain the UAV 3-D position and heading in
10 Hz. Together with the acceleration and attitude angle
information provided by the IMU sensor, a Kalman filter
is designed to provide a smoother and higher frequency (50
Hz) pose estimation for the UAV so that the ‘Control law’
block has its needed measurements in high quality.

III. LOCALIZATION ALGORITHM

The UAV pose in the map frame can be represented by its
3-D coordinates x, y, z and heading angle y. To differentiate
the localization results from their respective sensor sources,
we divide the UAV pose into two parts, namely the planar
pose (x,y,¥), and the vertical height z. The first part can
be estimated by the horizontal scanning laser range finder,
similar to a 2D ground robot case, while the altitude of the
UAV can be estimated by the second laser scanner.

A. Planar localization algorithm

The planar localization algorithm via the first laser scanner
contains the fundamental ideas that make the whole navi-
gation solution fast and efficient. With Assumption 1, the
conventional point cloud matching algorithm can be avoided,
leaving the number of point matching pairs single digits as
compared to the original thousands. With Assumption 2, the
estimation of rotational motion can be done by comparing the
difference between line gradients instead of relying on point
feature matching, thus making the estimation of rotational
motion decoupled from translational motion. This decoupling
feature is very beneficial because rotational motion usually
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Fig. 3: Feature matching result after a small motion
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Fig. 4: The split-and-merge and line extraction algorithm

results in inconsistent point matching results, especially
when the feature points are far away from the sensor source.
From Fig. 3, one can see that the point matching result is
correct in the first case which involves a small translation,
but becomes totally wrong in the second case which involves
a small rotation. As the method used in this paper estimates
the rotational motion robustly and independently from the
translational motion, the next stage point association and
localization will have very stable performance.

The planar localization algorithm will be explained in four
steps, which include feature extraction, rotation tracking,
corner feature association and position tracking.

1) Feature extraction: The laser scanner used for this
planar localization algorithm is a Hokuyo UTM-30LX sen-
sor. For each frame of scanned data, the sensor will output
1081 integer numbers to represent the measured distances
in millimeter from the rightmost angle to the leftmost angle
sequentially. Each distance data is associated with its own
angle direction. A simple transformation can be applied to
the raw measurement data to convert it from polar coordi-
nates (ry, 6;) to Cartesian coordinates (xi,yi):

X =
Y =

Then the split-and-merge algorithm [9] is applied to these
array of 2D points so that they can be grouped into clusters
with each cluster belonging to a straight line feature. Here,
the main steps of split-and-merge algorithm is summarized
below with Fig. 4 giving a graphical illustration:
1) Connect the first point A and the last point B of the
input data by a straight line.

7 COS 6
Ik sin 6y

(D

2) Find point C among all data points that has the longest
perpendicular distance to the line AB.

3) If this longest distance is within a threshold, then a
cluster is created with points in between A and B.

4) Else, the input points will be split into two subgroups,
A-C and C-B. For each group, the split-and-merge
algorithm will be applied recursively.

After obtaining the clusters of points, two choices of line
extraction methods can be used. The first is to use least
square line fitting by considering all points in the cluster,
while the second is to simply connect the first point and
the the last point. Although the second method looks a bit
harsh, these two methods surprisingly result in more or less
the same quality of line features in a clean and structured
indoor environment, thanks to the laser scanner’s superior
range accuracy and angular resolution. The second method
actually triumphs in computational time and it is finally
chosen as the way to get the line features. By convention,
each line can be represented by two parameters, namely the
line’s normal direction o4 and its perpendicular distance to
the center of laser scanner dy. In the last sub-figure of Fig.
4, xy axes represent the laser scanner frame.

2) Rotation tracking: In this step, Assumption 2 will be
utilized in an innovative way to keep track of the robot’s
heading direction y. Without loss of generality, let the map
frame x-axis align with one of the walls in the indoor
environment. Then all the walls will have their directions
at no, where « is the constant angle displacement and n can
be any integers. Choose one of the walls currently observable
and let its direction be B; in the laser scanner frame. Then
we have this wall’s map frame direction f3,, as:

ﬁm = Wt“’Bl
Vo1 + Ay + B
= n.

where y; and y;_; are the UAV headings in the current frame
and previous frame respectively and Ay; is the inter-frame
heading movement. Obviously, (W1 + Ay, + f3;) is divisible
by o, which leads to

AY, = — (Y1 + 1) Do ], 2

where the operator % is defined in this paper as:

2%b — (a mod b)
(a mod b)—b

, if (@ mod D) <b/2
, otherwise

3)

After obtaining Ay, the UAV heading can be updated as

Yt = Ymi—1 +AY,. “4)

Using the above method, the UAV heading is tractable
frame by frame provided that the initial heading ;0
is known. However, it should be noted that this heading
tracking algorithm only works when the UAV inter-frame
rotational motion is less than ¢¢/2. Fortunately, a 10 Hz laser
scanner is fast enough to handle the non-aggressive flight
cases. In actual implementation, the longest line extracted
for the current frame can be used for the heading alignment.
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3) Point feature association: The end points of the line
clusters can be treated as local point features, in which
some of them should physically associate with the known
map corners. The next step is to associate these local point
features to the globally known map features. This can be
done by transforming the locally observed point features to
the global map frame based on the information of previous-
frame UAV position [x;_1,y;—1] and the current-frame UAV
heading y;. As the UAV rotational motion has been resolved,
the difference between the obtained feature points and the
known map feature points should be caused by translational
motion only. By considering the fact that this translational
motion between frames of 10 Hz is very small, the nearest
neighbor searching is more than enough to associate them
well. The 2D transformation from the laser scanner local
frame to the global map frame can be calculated as,

qjm = [xm,t—h))m.t—l]T +R; X qdjls (5)

where ¢g;; is the local feature point, and R; is the rotation
matrix from local frame to global frame calculated based on

lllt’

cosy;  siny; ©)
—siny; cosy; |-

4) Position tracking: Similar to the method in rotation
tracking, the current position can be calculated based on the

previous-frame position [x,,;—1,ym,—1] and an incremental
change [Ax;,Ay,]:

R[:

[xm,ta)’m,t] = [xm,tfhym,tfl] + [Axthyt]v (7
where
Y wi(pi—qjm)
P ®)
Ay, Yow; .

This incremental change can be calculated as an average
displacement of all the associated features. By considering
the laser scanner noise model, i.e. points further away are
more noisy, the matched point features are given different
weights w; in calculating the average displacement. The
closer the feature points, the larger the weight.

B. Height measurement

In an indoor environment with completely flat ground,
UAV height measurement can be simply obtained via a sonar
or a one-point laser range finder. However, for the cases when
the UAV needs to fly over tables, chairs and windowsills,
these sensors will fail badly as the UAV cannot distinguish
between the actual floor surface and the surfaces of other
objects. Barometer may be a candidate, but its accuracy does
not meet the requirement for a UAV to fly in confined indoor
environments. To solve this problem, a second laser scanner
is mounted orthogonally to the first and a height calculation
algorithm with robust floor identification is developed and
integrated into the navigation system.

Similar to the line extraction algorithm mentioned above,
the same split-and-merge method can be applied also. After

Outer-loop controller  Inner-loop command generator  Inner-loop controller
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Fig. 5: Control structure of QuadLion

filtering out those line segments with dissimilar gradients
to the ground plane, the rest are sorted by their perpen-
dicular distances to the laser scanner center. The furthest
line segments are kept, and among them the longest one is
believed to be the true ground. Finally, the UAV height can
be calculated as the perpendicular distance of this line to the
laser scanner center, compensated by the offset between the
laser scanner and the UAV center of gravity (CG) as well
as the UAV attitude angles. Using this method, an accurate
height measurement can be obtained as long as the laser
scanner projects a portion of its laser beams onto the true
ground. It even works for the case when the UAV flies over
protruding objects on the ground.

IV. CONTROL

As the platform is already stabilized in the attitude dynam-
ics by the Naza-M controller, only an outer-loop controller
for position tracking needs to be designed (see Fig. 5). Here,
we adopt a RPT control concept from [10] and apply it to the
case of QuadLion trajectory tracking. Theoretically, a system
controlled by this method is able to track any given reference
with arbitrarily fast settling time subjected to disturbances
and initial conditions. The basic idea is as follows. For a
linear time invariant system

X = Ax+Bu+Ew
=49y = Cx+Dw ; 9
h = GCx+Dyyu+Dypw

with x,u,w,y,h being the state, control input, disturbance,
measurement and controlled output respectively, the task
of RPT controller is to formulate a dynamic measurement
control law of the form

v =Ac(e)v+B.(€)y +Go(e)r+ ...+ G_1(e)r* 1,
u=C.(€W+D.(€)y+Hy(&)r+ ...+ He_1(e)rk 1,
so that when an proper €* > 0 is chosen,
1) The resulted closed-loop system is asymptotically sta-
ble subjected to zero reference.

2) If e(r,€) is the tracking error, then for any initial

condition X, there exists:
lell, = (J5" le(t)?|d)'/? =0, as &—0. (10)

Similar to the case introduced in [11], the outer dynamics
of QuadLion is differentially flat. That means all its state
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variables and inputs can be expressed in terms of algebraic
functions of flat outputs and their derivatives. A proper
choice of flat outputs could be

o =[xz (11)

It can be observed that the first three outputs, x, y, z, are
totally independent. In other words, we can consider the UAV
as a mass point with constrained velocity, acceleration, jerk
and etc. in the individual axis of the 3-D global frame when
designing its outer-loop control law. Hence, a stand-alone
RPT controller based on multiple-layer integrator model
in each axis can be designed to track the corresponding
reference in that axis. For the x-axis or the y-axis, the nominal
system can be written as

|01 0
xn—ooxn+lun

yn:x”

where x, contains the position and velocity state variables
and u, is the desired acceleration.

To achieve better tracking performance, it is common to
include an error integral to ensure zero steady-state error
subjected to step inputs. This requires an augmented system
to be formulated as

; 12)

0 -1 00 10 0
0 0 1000 0
. 0 0 0100 0
Tw=1o 0 0 0 0 o T |o|%
0 0 000 1 0
00 0000 1 (13
yxy:xx)’
hy=[1 0 0 0 0 0]xy,

where x, = [[(pe) pr vr ar p V]T with p,,v,,a, as
the position, velocity and acceleration references in the
controlled axis, p, v as the actual position and velocity and
DPe = 1p — p as the tracking error of position. In Fig. 5, x,
and x, are the respective representation of x,, in the x- and
y-axis. By following the procedures in [12], an linear feed
back control law of the form below can be acquired,

Uxy = FxyXyy, (14)
where
Fo— kow? @ +2Cw.k 2w, +k;
Ca 3 2
€ € €
1 0),%+2§wnki 2Cwn+ki (15)
_ = _ - .

Here, € is a design parameter to adjust the settling time
of the closed-loop system. ,,,k; are the parameters that
determines the desired pole locations of the infinite zero
structure of (13) through

pi(s) = (s+ki) (s> + 28 ops + @) (16)

The z-axis control is similar but in a lower-order form.
As the inner-loop is directly looking for velocity reference
in this axis, it is straight forward to model the outer loop as
a single integrator from velocity to position, and it leads to
the augmented system as

0 -1 0 1 0
. _ [0 0 1o o
=10 0o o0 o|/*" |o|*

0 0 0 0 1 an
yz:xZ
h,=[1 0 0 O]x,

where x, = [[(p.) pr v p]T. This leads to a linear
feedback control law of

(18)

Uy = Iz Xz,
where
Loy 20,8 20,8
€ €2 €2

E:

Theoretically, when the design parameter € is small
enough, the RPT controller can give arbitrarily fast re-
sponses. However, due to the constraints of the UAV physical
dynamics and its inner-loop bandwidth, it is safer to limit the
bandwidth of the outer loop to be much smaller than that
of the inner-loop dynamics. For the case of QuadLion, the
following design parameters are used:

e =1 e =1
. o, = 099 . B
X,y axis : ¢ = 0707 Z axis 2),1 = (2)‘559
ki = 025 N

There is still one problem unsolved. From Fig. 5, it can
be seen that the output from the outer-loop controller in
physical meaning is the desired accelerations in xy-axis and
the desired velocity in z-axis, both in global frame. However,
the inner-loop controller is looking for attitude references
(¢, 6;) and the body-frame z-axis velocity reference. A
conversion is needed to link the two control layers together.
This leads to another functional block called the Inner-loop
command generator, in which a rotational conversion from
the global frame to the body frame R/, is needed and
another matrix G, is used to convert the desired acceleration
references to the desired attitude angles. For all quadrotor

UAVs,
- 0 1/g
GCN{_I/g 0].

where g is the gravitational constant.

19)

V. THE IMPLEMENTATION RESULTS

The proposed control and navigation algorithms are im-
plemented in C++ language and executed by the UAV
onboard computer. For the planar localization algorithm, the
average computation time is about 12 ms for a single frame
of laser scanner data. Table V shows the position error
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TABLE I: Performance of the planar localization algorithm

Position (m) | RMS error (m) | Execution time (s)
(—2,-4) (0.06,0.05) 0.011
(2,-5) (0.07,0.09) 0.017
(11,-3) (0.13,0.09) 0.011
(1,6) (0.04,0.05) 0.009
14
+Actual Path
12 — — — Planed path
10
8 .
6 .
E
4 |-
2 |-
0 |-
_2 .
_4 L 1 1 1 L
-10 -5 0 5 10

Fig. 6: Localization result after one complete flight

and computation time of the localization algorithm when
the UAV is hand held at four stationary locations in the
indoor environment. The Root-Mean-Square (RMS) error of
the estimated position is very small. To show its dynamic
performance, the localization trajectory after one complete
flight is logged and shown in Fig. 6. It is actually the full
flight path in accomplishing the missions of the SAFMC
2013. Fig. 7(a) and Fig. 7(b) show two photo snaps in the
competition, in which the quadrotor UAV flies through a
window and drops a payload to the target location. These
two tasks require very high localization accuracy as well as
precise position control performance from the UAV system.
With this kind of robust performance, the Unmanned Aircraft
Systems Group from the National University of Singapore
have won the top three awards of the competition, namely

(a) Fly through a window (b) Drop a payload precisely

Fig. 7: Fly-off in the SAFMC competition

the “Overall Championship”, the “Best Performance Award”,
and the “Most Creative Award”.

VI. CONCLUSIONS

In conclusion, this paper has proposed a robust and
efficient navigation solution for a quadrotor UAV to perform
autonomous flight in a confined but partially known indoor
environment. By assuming structured indoor features and
pre-known key corner coordinates, the 3-D pose of the UAV
can be accurately estimated by a 2-laser-scanner setup. By
utilizing this measurement and applying the RPT control
method with integral action, the controlled UAV is able
to navigate in the indoor environment fully autonomously.
All navigation computation is done by an ARM-based em-
bedded computer onboard of the UAV. The whole UAV
system was verified in the SAFMC 2013 and acquired the
top awards. Extension of the work can be done to tackle
more complicated indoor environments, and autonomous
path planning algorithm can be integrated into the system
for more demanding applications.
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