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Abstract—Global warming and climate change have become
universal issues recently. One of the leading sources of climate
change is automobiles. Automobiles are the prime source of
air pollution in urban areas globally. This has resulted in a
problematic and chaotic state in the development of an automatic
traffic management system for capturing and monitoring vehicles’
hourly and daily passage. With the significant advancement of
sensor technology, atmospheric information such as air pollu-
tion, meteorological, and motor vehicle data can be harvested
and stored in databases. However, due to the complexity and
non-linear associations between air quality, meteorological, and
traffic variables, it is difficult for the traditional statistical
and mathematical models to analyze them. Recently, machine
learning algorithms in the field of traffic emissions prediction
have become a popular tool. Meteorological and traffic variables
influence the variation and the trend of the traffic pollutants.
In this paper, an optimized artificial neural network (OANN)
was developed to enhance the existing artificial neural network
(ANN) model by updating the initial weights in the network using
a Genetic Algorithm (GA). The OANN model was implemented to
predict the concentration of CO, NO, NO2, and NOx pollutants
produced by motor vehicles in Kuala Lumpur, Malaysia. OANN
was compared with Artificial Neural Network (ANN), Random
Forest (RF), and Decision Tree (DT) models. The results show
that the developed OANN model performed better than the ANN,
RF, and DT models with the lowest MSE values of 0.0247 for
CO, 0.0365 for NO, 0.0542 NO2, and 0.1128 for NOx. It can be
concluded that the developed OANN model is a better choice in
predicting traffic emission concentrations. The developed OANN
model can help environmental agencies monitor traffic-related air
pollution levels efficiently and take necessary measures to ensure
the effectiveness of traffic management policy. The OANN model
can also help decision-makers mitigate traffic emissions to protect
citizens living in the neighborhood of highways.

Keywords—Optimized Artificial Neural Network (OANN); Ge-
netic Algorithm; traffic emissions

I. INTRODUCTION

Global warming and climate change have become universal
issues recently [1, 2]. One of the leading sources of climate
change is emissions from motor vehicles. Carbon monoxide
(CO), nitrogen dioxide (NO2), carbon dioxide (CO2), and
nitrogen monoxide (NO) are among the significant risk to
human health and the environment, which can be emitted
by motorized vehicles [3]. Road transport emissions exposure

can increase the risk of lung cancer [4], respiratory and
cardiovascular effects [5, 6], pulmonary, chronic diseases [7]
and mortality [8, 9]. In 2015 air pollution, in general, are
responsible for over 6 million deaths in the world [10, 11].
There is more than 400,000 premature death in Europe [12],
and around 7 million worldwide [13].

Automobiles are the prime sources of air pollution in
city areas universally. For example, 80.49% of emissions in
Beijing, China, were produced by motor vehicles [14]. It was
also found that 80% of air pollution in the Lima Metropolitan
Area was produced from automobiles [13]. in China, 85%
of emissions were from transport [15], while in the United
Kingdom was 92% [16], and 75% in Malaysia [17], but in the
United States, automobiles are responsible for emitting 57%
of air pollution [7]. Many other studies also show that 92% of
CO and 65% of hydrocarbon (HC) pollutants were emitted
from the transportation activities in Shanghai [18], and 60%
of NOx and PM emissions were from heavy-duty trucks in
China [19].

The variation and trend of air pollution strongly depend on
meteorological parameters and traffic characteristics [20]. A
study conducted in Shiraz, Iran, confirmed that meteorological
conditions increase the air pollution level [21]; a similar result
was also found in Karaj, Iran [22]. A relationship between air
pollution and meteorological condition was studied in Beijing
and Nanjing, China. The study reveals that air pollution con-
centrations depend on meteorological factors [23]. Research
in Linfen city, China, shows negative correlations between
air pollutants and meteorological parameters [24]. A study
was conducted in Penang, Malaysia, to investigate the sources
contributing to air pollution concentrations. Five air pollutants
were investigated. The result shows that a negative correlation
was found between relative humidity with CO, O3, SO2,
PM10, and NO2.

A negative correlation was found between wind speed
and CO, SO2, and NO2, but positive relation with PM10

and O3. Whenever temperature increases, the O3, NO2, CO,
and PM10 pollutants increase too, but SO2 decrease [25].
A study on O3 variability due to meteorological parameters
was investigated in Selangor, Malaysia. The result shows
that wind speed, temperature, relative humidity, and wind
direction significantly impact O3 concentrations [26]. [27]
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studied air pollution variation due to meteorological in four
areas in Malaysia, namely, Petaling Jaya, Cheras, Shah Alam,
and Klang. The result reveals that meteorological parameters
influenced the seasonal trend of air pollution. Association
between air pollution and traffic characteristics has also been
investigated. A study was conducted to compare the impact
of traffic volume on air pollution levels during COVID-19 in
Italy. Data from 2017 to 2018 before COVID-19 and 2020 data
during COVID-19 were used. The result reveals that traffic
volume significantly impacts PM10, NOx, NO, and NO2

concentrations [28].

A study of [29] investigates the exposure of air pollution
produced by vehicles on cyclists in Brazil. The research
indicates an increase in motor vehicles during peak hours
in the morning and evening. The expansion of the vehicle
increases the level of air pollution. In addition, air pollution
level due to traffic characteristics was studied in Japan [20].
The result indicates that the low speed of the vehicle increases
the pollution level. Similarly, traffic volume and congestion
increase the emission of air pollution in Kyoto, Japan. It was
also found that trucks are the main contributor of PM and
NOx emissions. Furthermore, a study in Kuala Lumpur was
conducted to investigate the effect of traffic characteristics on
the air pollution level. The study reveals that air pollution level
strongly depends on fuel consumption, traffic volume, vehicle
speed, and waiting time on the road. The result also shows
that lower traffic congestion reduces the level of air pollution
in Kuala Lumpur [30].

With the rapid advancement of sensor technology, atmo-
spheric information such as air pollution, meteorology, and
motor vehicle data can be collected and stored in databases.
Due to the complexity and non-linear associations that exist
between air quality, meteorological, and traffic variables, it is
difficult for traditional statistical and mathematical models to
analyze them [31, 32]. Lately, the usage of machine learning
algorithms such as long short term memory, random forest,
support vector machine, decision tree, and artificial neural
network (ANN) in traffic-related air pollution prediction has
become popular [33]. ANN model appeared to be the most
used model for predicting traffic emissions because it reduces
time, cost, and complexity. It also provides fast and accurate
prediction with less error and provides prediction values closer
to the observed values [34]. ANN can solve complex multidi-
mensional variables and non-linear problems related to traffic
emission concentrations due to meteorological conditions and
traffic features [34, 35].

In this paper, an optimized artificial neural network
(OANN) was developed to enhance the existing artificial neural
network (ANN) model by updating the weights in the network
using a Genetic Algorithm (GA). The OANN model was
implemented to predict the concentration of CO, NO, NO2,
and NOx pollutants produced by motor vehicles in Kuala
Lumpur, Malaysia. The remaining structure of the paper is
given as follows. Section II discusses the related work on
vehicle emissions prediction using the ANN model. Section
III presents the methodology used in this study. Section IV
presents the result and the comparison with existing machine
learning models for evaluation. Finally, the conclusion is
discussed in Section V.

II. RELATED WORK

Motor vehicles are producing harmful pollutants that dis-
perse to the atmosphere [33]. These pollutants have significant
impact on human health [36]. Several statistical models have
been developed for predicting the traffic emissions concentra-
tions at intersection, canyon, street, near the school, and many
other locations. However, these statistical models could not
predict the emissions rate due to the variability and influence of
meteorological variables and traffic parameters [31]. Machine
learning models have recently been applied. These models
were able to predict the concentrations of emitted pollutants
from motor vehicles. ANN has become the most popular model
for predicting traffic-related air pollution [34]. These models
are highly dependent on the independent variables provided
in the study. There is a lack of either meteorological data or
traffic data in many studies [37]. Several studies suggested
that meteorological and traffic variable influence the trend and
variation of traffic pollutants [33], such as relative humidity,
temperature, wind direction, and wind speed, [38], traffic
volume, vehicle speed [39], types of the vehicle, etc. [40].

The variables mentioned above are needed to predict emis-
sion levels. Still, it is not always available [37], for example,
prediction of carbon monoxide (CO) concentrations at Jiyin
Ave and Shuanglong intersections was conducted by [41] using
Gated Recurrent Unit (GRU) neural networks based in the ab-
sence of a meteorological dataset. The accuracy of the model’s
performance was found good with a root mean squared error
(RMSE) of 0.088 and mean absolute error (MAE) of 0.056.
[42] proposed machine learning algorithms by comparing and
selecting the best model with good performance to reduce the
effect of Greenhouse gas (GHG) emitted by passenger vehicles
on climate change in Canada. Artificial Neural Network (ANN)
shows better performance over the other machine learning
algorithms with RMSE of 0.442 and MAE of 0.347. This study
also lacks the meteorological dataset. ANN was developed by
[43] to predict the emission of CO, CO2, NOx, and HC
from a liquefied natural gas bus in Zhenjiang, China, without
considering meteorological features. The performance of the
prediction of CO2 was unsatisfactory. The MSE value is 52,
but the remaining predictions of the contaminants were good.
The MSE value for CO 2.23, HC 0.68, and NOx 9.4. Carbon
monoxide was predicted using a Non-linear Autoregressive
Exogenous (NARX) based neural network in the absence of
traffic data at Shiraz, Iran [44]. The proposed model performed
well compared to the previous models with RMSE values of
0.43, R2 0.31, and MAPE 51.

There are some studies used three datasets, namely, air
quality, meteorological, and traffic datasets. ANN was applied
to predict the level of NO, NO2, O3, NOx, CO2, PN10,
NH3, PM10, PM2.5, and PM1 pollutants from on-road
vehicles at the street canyon in Germany. The model have
the lowest RMSE for some pollutants, while others have the
highest RMSE, which shows that the model has to be improved
for predicting these pollutants. The RMSE for NO, NO2,
O3, NOx, CO2, PN10, NH3, PM10, PM2.5, and PM1

were 16.017, 5.092, 5.774, 32.820, 0.790, 12,872.74, 13.474,
0.050, 0.013, and 0.010 [45]. [46] proposed an ANN model to
predict CO concentration at Subang Jaya Toll plaza, Selangor,
Malaysia. Traffic and meteorological variables were used as
an input to the model. The model shows good accuracy with
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MAE 0.8925, RMSE 1.2736, RAE 21.99, and RRSE 19.40.
A comparison with ANN and developed ResNetELF was
conducted [47] to predict the CO, CO2, NOx, and HC levels.
The ANN performed well with RMSE 0.0930 for CO, 0.080
for CO2, 0.0856 for NOx, and 0.0798 for HC. Furthermore,
[48] predict NO, CO, and HC concentrations using the ANN
model. The model’s performance was found good with RMSE
1.89, 0.97, 1.09 for NO, CO, and CO2. Table I presents the
variables and size of the dataset used by previous studies.
Table II summarizes the performance of the models used in
the previous researches.

TABLE I. SUMMARY OF THE VARIABLES AND DATASET SIZE USED BY

PREVIOUS STUDIES

Author Variables Dataset

(Wang et

al., 2020)

CO, traffic volume,

population density.
One

week

(Khan et

al., 2019)

CO, car, truck, population,

year, and GDP transportation.
N/A

(Zahoor

et al., 2019)

HC, CO, CO2, NOx, LNG,

buses, speed, acceleration,

passenger load, and road grade.
N/A

(Mohebbi et

al., 2019)

CO, rainfall, temperature,

wind direction, moisture,

and wind speed.

Four

years

(2005-

2008)

(Goulier et

al., 2020)

NO, NO2, O3, NOx, CO2,

PN10, NH3, PM10, PM2.5,

PM1, sound, traffic, time,

temperature, wind direction

and speed, and relative

humidity.

Three

Month

(2018)

(Azeez et

al., 2019)

CO, heavy truck, buses,

medium truck, and special

duty-truck) cars (taxi and

private cars) and motorbikes,

wind direction, temperature,

and wind speed.

One

Month

(April

2017)

(Xu et

al., 2019)

NOx, CO, CO2, HC,

temperature, humidity,

weather, pressure, wind

speed, and road network.

Three

Month

(2017)

(Xu et

al., 2017)

CO, HC, NO, traffic

volume, vehicle speed

and length, vehicle

registration, wind speed,

opacity, temperature,

wind direction, pressure,

and humidity.

N/A

III. METHODOLOGY

A. Data and Location

In this paper, air quality, meteorological, and traffic datasets
were used. The traffic data was obtained from the Ministry of
Works, Malaysia, while the air pollution and meteorological
datasets are collected from the Department of Environment
(DOE), Malaysia. These datasets are set of observations
recorded at a specific time for sixteen hours daily for three
years (2014-2016). The CO, NO, NO2, and NOx features
from air quality and meteorological features such as relative
humidity, wind speed, and temperature were used [36]. The
traffic dataset consists of traffic volume, the volume of the
type of vehicle (taxi and car, bus, van, heavy and light lorries,
and motorcycle), time spent on the road, and speed of the
vehicle were used [49]. The traffic dataset was collected from
the Ministry of Works Malaysia at Jalan Kepong traffic census
station located in Kuala Lumpur, Malaysia.

TABLE II. SUMMARY OF THE MODEL’S PERFORMANCE OF THE

PREVIOUS STUDIES

Author Pollutant MAE MSE RMSE

(Wang et

al., 2020)
CO 0.056 — 0.088

(Khan et

al., 2019)
CO 0.347 — 0.442

(Zahoor et

al., 2019)

CO,

CO2,

NOx

HC

—

2.23

52

9.4

0.68

—

(Azeez et

al., 2019)
CO — — 0.43

(Goulier

et al., 2020)

NO,

NO2,

O3,

NOx,

CO2,

PN10,

NH3,

PM10,

PM2.5,

PM1

— —

16.017

5.092

5.774

32.820

0.790

12,872.27

13.474

0.050

0.013

0.010

(Mohebbi et

al., 2019)
CO, 0.8925 — 1.2736

(Xu et

al., 2019)

CO,

CO2,

NOx,

HC

— —

0.0930

0.080

0.0856

0.0798

(Xu et

al., 2017)

NO,

CO,

HC

— —

1.89

0.97

1.09

B. Design and Development of OANN Model

An optimized artificial neural network (OANN) was de-
signed and developed to enhance the existing artificial neural
network (ANN) model by updating the initial weights in the
network using a Genetic Algorithm (GA). An artificial Neural
Network (ANN) is an information processing system develop
to imitate the human brain’s learning and decision-making
from experience and examples [50, 51]. The structure of the
ANN model consists of input layer, hidden layers, and output
layer(s). These layers consist of neurons. These neuron’s
connection is associated with weight and bias. The neurons
have an activation function that determines the neuron’s output
[52]. The structure of the ANN equation is given below [51]:

y = f

(

n
∑

i=1

wivi − b

)

(1)

Where y is the output of the network, n is the number of
neurons in hidden layers, wi is the weights of the respective
neurons, vi is the input values of the neurons, f is the
activation function, and b is the bias. The learning process
of ANN improves the model’s performance during training by
updating the weights in the network. The weights of neurons in
ANN define how much influence the input has on the output.
The initial weights are randomly chosen [53]. The optimization
method has been used to improve and update the weights to
efficiently improve the model’s accuracy.

Optimization is a process of making something better or
finding the best solution, or making a good decision. In this
study, a Genetic Algorithm (GA) was designed and developed
to optimize the initial weights of ANN to improve its perfor-
mance in this study. GA works as a process of making changes
or finding optimal solutions for the problems. GA works on a
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population with a chromosome, and each chromosome has a
number of values known as genes [54, 55, 56].

Population in GA represents the entire network’s weights
(that is, the weights of the input layer to the hidden layer
and the weights of the hidden layers to the output layer).
Chromosomes represent the weights in one layer (for example,
the weights of the input layer to the hidden layer). Finally,
Gene represents each neuron’s weight (for example, if we
have five neurons in the input layer). Fig. 1 illustrates the
representations of the GA in the ANN model.

Fig. 1. Representation of GA in an ANN Model.

We will create three vectors. The first vector holds the
number of chromosomes per population, the second vector
holds the size of the population, and the last vector holds the
initial population. There are few processes to generate a new
and better population. The processes are given below:

1) Select the best parent based on their fitness function.
2) The selected parents will be used to produce off-

spring.
3) The production of offspring was performed using

crossover and mutation.
4) Generated offspring (we create a vector to hold the

generated offspring (new population)).
5) The algorithm generates new populations (based on

how many generations needed).
6) One of the best population will be selected.
7) The algorithm stops when the optimal solution is

found.

Ring pattern was used for selecting parent; for example,
if we have ten chromosomes and each chromosome has six
genes, the newly generated population will have the same
number of chromosomes and genes. If seven chromosomes
were found to have the highest fitness value, they would be
selected. The remaining three chromosomes will be produced
using the ring style. The algorithm will combine the seventh
and the first chromosome to produce the eighth one. The
first and second chromosomes will be combined to produce
the ninth one; we apply a similar way until we get similar

chromosomes in the new generation. An example of initial
weight (population) is given in Fig. 2.

Fig. 2. Population in Genetic Algorithm (GA)/Weights in ANN.

The selection of parents was done by calculating the fitness
value or function. This was performed using the equation
below [57, 58]:

f(c) = 2c+ 2 (2)

Where f is the fitness and c is the chromosome values
(genes/weights). An example of a population given in Fig. 2
was calculated in Table III. Based on the table, the first, third,
and last chromosomes have the highest fitness values. These
parents will be selected to produce new offspring.

TABLE III. FITNESS VALUES CALCULATION

Chromosome Fitness Function
Parent

Selection

0.42 + 0.95 + 0.01 + 0.11 +

0.22 + 0.10 = 1.61
f(1.72) = 2(1.72)+2 = 5.44 5.44

0.12+ -0.51 + 0.05 + 0.19 +

0.25 + 0.26 = 0.36
f(0.36) = 2(0.36)+2 = 2.72 2.72

0.02 + 0.06 + 0.09 + 0.50 +

0.32 + 0.69 = 1.68
f(1.68) = 2(1.68)+2 = 5.36 5.36

0.31 + 0.60 + -0.02 + 0.52 +

0.16 + 0.01 = 1.58
f(1.58) = 2(1.58)+2 = 5.16 5.16

As we have discussed earlier, producing offspring was done
through crossover and mutation. The crossover is the process
of combining two selected parents to produce two offspring
[56, 59]. The first half of the first parent and last half of the
second parent are selected as the first half of the offspring,
while the last half of the first parent and the first half of the
second parent were chosen as the second half of the offspring.
Fig. 3 shows the producing offspring using the crossover.

Fig. 3. Producing Offspring Using Crossover.
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The mutation was achieved by changing the gene’s (weight)
value from the new offspring [57, 60]; the altered gene was
called a mutant. The gene alteration was done randomly by
changing the gene with a lower or higher number than the
value of the previous gene range between -1 to 1. An example
of mutation is presented in Fig. 4.

Fig. 4. Producing Offspring Using Mutation.

After the new population was generated, the algorithm
produces new generations (based on how many generations
are needed). One of the best generations (optimized weights)
will be selected and used as the weights of the ANN model.
The flow chart of the Genetic Algorithm (GA) for selecting or
producing a new solution has been presented in Fig. 5.

Fig. 5. The Flow Chart of GA for Finding Optimal Solution.

C. Implementation of the OANN Model

The developed OANN predictive model was implemented
to predict the concentrations of pollutants produced by motor
vehicles. The estimated hourly traffic volume, generated vehi-
cle speed and time spent on the road, standardized pollutants
values, meteorological and air quality variables were used to
train and to test the developed predictive model for traffic
emissions concentrations.

The developed OANN model consists of four layers: one
input layer, two hidden layers, and one output layer. The input

layer consists of 12 inputs: traffic volume, taxi and car volume,
bus volume, van volume, heavy lorries volume, light lorries
volume, motorcycle volume, time spent on the road, vehicle
speed, and relative humidity, wind speed, and temperature. The
first hidden layer has ten neurons. The second hidden layer has
100 neurons. The output layer has only one output. The output
is the predicted values of the pollutants. For OANN prediction
model was created for all the four pollutants namely, CO, NO,
NO2, and NOx. The linear activation function was used from
the output layer. The ReLU activation functions were used for
the hidden layers.

The weights of the model were optimized using a Genetic
Algorithm. Fifty populations were generated, and one of the
best populations was selected. The structure of the OANN
model has been presented in Fig. 6 and applying the GA in
the model was presented in the Fig. 7.

Fig. 6. Structure of the OANN Model.

Fig. 7. GA in an OANN Model.

IV. RESULT AND DISCUSSION

The developed Optimized Artificial Neural Network
(OANN) model was evaluated using two main regression
metrics, namely, Mean Absolute Error (MAE), Mean Squared
Error (MSE), and comparison with Artificial Neural Network
(ANN), Decision Tree (DT), and Random Forest (RF) models.
MSE is the difference between the actual and predicted values.
The MEA calculates and finds the differences between the
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measure or predicted value and the observed value. Equation
3 used in this study is given below [61]. MSE is the difference
between the actual and predicted values. MSE was calculated
using equation four [62].

The n is the number of prediction values,
∑

represent the
summation (adding all the values), x̂i is the predicted values,
xi represents the actual values, and |x̂i − xi| is the absolute
errors.

MAE =
1

n

n
∑

i=1

|xi − x̂i| (3)

MSE =
1

n

n
∑

i=1

(x− x̂)
2

(4)

An Optimized Artificial Neural Network (OANN) was
developed to predict the concentration of traffic emission in
Jalan Kepong area, Kuala Lumpur. The OANN was enhanced
by updating the initial weights of the ANN model using GA
to improve the accuracy of the existing ANN model. There
is a total of 1120 initial weights generated by the model.
These weights were from the input layer neurons, first hidden
layer neurons, and second hidden layer neurons. There are
12 neurons in the input layer, and they are connected to the
first hidden layer. There are ten neurons in the first hidden
layer, and they are connected to the second hidden layer.
Finally, there are 100 neurons in the second hidden layer,
and they are attached to the neuron in the output layer. The
generated weights were optimized to improve the ANN model.
The GA generated 50 populations/optimized weights, and one
of the best populations was selected. Fig. 8 presents the best
solution or best population/optimized weights for predicting
the concentrations of CO, NO, NO2, and NOx emissions.

Fig. 8. Best Solution/Population/Weights for Predicting the CO, NO, NO2,
and NOx Pollutants.

The best set of weights will be selected from the generated
50 population. In Fig. 8 the set of weights was selected after
33 generation for predicting the CO pollutant.

The best set of weights for predicting NO pollutant was
selected after 24 generations. Best optimized weights were

selected after 38 generations for NO2 prediction. The best
set of weights was selected after 45 generations for predicting
the level of NOx emissions. Sample of the optimized popula-
tions/weights was illustrated in Fig. 9.

Fig. 9. The Optimized Weights in The Layers.

The highlighted in yellow colors in Fig. 9 were the opti-
mized weights from the input layer to the first hidden layer,
which consist of 12 neurons connected to the first hidden layer
with ten neurons. The first hidden layer consists of 10 neurons
connected to the second hidden layer with 100 neurons. The
second or last hidden layer has 100 neurons connected to
the output layer with one neuron. The population with the
optimized weights were chosen for prediction of the CO, NO,
NO2, and NOx. The set of the optimized weights for the
prediction of the CO pollutant was presented in Fig. 10.

Fig. 10. The Optimized Weights in the Network.

The highlighted green color in Fig. 10 were the number of
neurons in the layer. While the highlighted in yellow colors
were the number of neurons connected to the next layer.

A sample of the total fitness of each generation by GA
for predicting CO pollutant has been given. The fitness val-
ues of the first set of weights were 10.505416290436793.
There are no changes in the fitness values until the seventh
generation. In the eighth generation, there is a change from
10.505416290436793 to 10.548116345442276. In the ninth
generation, there is a change from 10.548116345442276 to
10.791954330972974. From the tenth generation until the
thirty-second generation, there were no changes for the fitness
functions. In the thirty-three generation, there is a change from
10.791954330972974 to 10.818411975096184. From thirty-
fourth generation until fifty generations there is no change in
the fitness value. The highest fitness value of the weights was
found in the thirty-three generation.
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The developed Optimized Artificial Neural Network model
was used to predict the concentrations of CO, NO, NO2,
and NOx pollutants emitted by motor vehicles in Jalan Ke-
pong, Kuala Lumpur. Mean absolute error (MAE) and mean
squared error (MSE) regression metrics were used to evaluate
the performance of the model. Fig. 11 shows the predicted
and original values of the pollutants. The prediction of the
CO pollutant shows that the model was able to follow the
trend of the original values. Similarly, the prediction of NO
also follows the trend of the original values with a slightly
difference. The OANN model also followed the trends of the
original values for predicting the NO2 and NOx pollutants.

Fig. 11. Predicted Values and the Original Values of the Pollutants Using
OANN Model.

The developed OANN model’s performance was compared
with ANN, DT, and RF models for evaluation by predicting
the concentrations of CO, NO, NO2, and NOx pollutants.
The performance of the models was evaluated using mean
squared error and mean absolute error. Fig. 12, 13, 14, and
15 present the original or real values with the predicted values
for CO, NO, NO2, and NOx predictions. It can be seen that
the predicted values of the developed OANN model were able
to follow the trend of the real values more than the DT, RF,
and ANN models. The ANN model was not able to follow
the trend of the real values except for predicting the NOx

pollutant.

Fig. 12. Comparison of Original values and Predicted Values between
OANN, ANN, RF, and DT Models for CO Prediction.

Fig. 13. Comparison of Original values and Predicted Values between
OANN, ANN, RF, and DT Models for NO Prediction.

Fig. 14. Comparison of Original values and Predicted Values between
OANN, ANN, RF, and DT Models for NO2 Prediction.
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Fig. 15. Comparison of Original values and Predicted Values between
OANN, ANN, RF, and DT Models for NOx Prediction.

Table IV presents the comparison of MAE and MSE
values between OANN, ANN, RF, and DT for predicting
the concentrations of CO, NO, NO2, and NOx pollutants.
The result shows the performance of the OANN model for
predicting the concentrations of CO was found better than the
ANN, DT, and RF models with lowest MAE and MSE values
of 0.1155 and 0.0248. The ANN model performed better than
RF and DT with the lower MSE values of 0.0441 for the CO
prediction. The DT model performed a little better than the
RF model with lower MAE and MSE scores of 0.1522 and
0.0446, whilst the MSE and MAE values of RF were 0.0463
and 0.1551.

The comparison of the OANN, ANN, DT, and RF models
shows the significant difference of results in terms of MSE and
MAE values for predicting the level of NO pollutant. The
MAE and MSE values of the developed model were found
lowest compared to DT, RF, and ANN models. The MAE and
MSE values were 0.1263 and 0.0365, and this shows that the
enhanced OANN model was better than the RF, ANN, and
DT models. The DT model performed better than the RF and
ANN models with lower MAE and MSE scores of 0.1446 and
0.0642. The MAE and MSE values of the ANN model were
higher than the RF model, which shows that the RF model was
performed better than the ANN model. The MAE and MSE
values of the RF model were 0.1450, 0.0644, and for the ANN
model were 0.5042 and 0.3040.

The performance of the OANN model is better than the
DT, RF, and ANN models with the lowest MAE and MSE
values for predicting the concentrations of NO2 emissions.
The MAE and MSE values were 0.1731 and 0.0542. Moreover,
the performance of the ANN model was found unsatisfactory
with the highest MAE and MSE values of 0.3928, 0.2288 more
than RF and DT models for the NO2 prediction. The RF model
performed better than the DT model for predicting the level
of NO2 emissions with a lower MSE value of 0.0810.

Table IV indicates that the OANN model has the lowest
MAE and MSE values than the ANN, DT, and RF models for
the prediction of NOx pollutant., this shows that the OANN
model performed better than ANN, DT, and RF models. The
MAE and MSE scores of the OANN model were 0.2368 and

0.1128. Unfortunately, the DT model has the highest MAE and
MSE scores than the ANN and RF models. The MAE and MSE
values of the DT model were 0.3178 and 0.2003. However,
the RF model performed better than the ANN model with the
MAE and MSE values of 0.2872 and 0.1757 for predicting the
concentrations of NOx pollutant. The MAE and MSE values
of the ANN model were 0.2928 and 0.1812.

TABLE IV. COMPARISON BETWEEN OANN, ANN, DT, AND RF FOR

TRAFFIC EMISSIONS PREDICTION

AP
OANN ANN Random Forest Decision Tree

MAE MSE MAE MSE MAE MSE MAE MSE

CO 0.1155 0.0247 0.1696 0.0441 0.1551 0.0463 0.1522 0.0446

NO 0.1263 0.0365 0.5042 0.3040 0.145 0.0644 0.1446 0.0642

NO2 0.1731 0.0542 0.3928 0.2288 0.2024 0.0810 0.2007 0.0826

NOx 0.2368 0.1128 0.2928 0.1812 0.2872 0.1757 0.3178 0.2003

It can be concluded that the developed OANN model
achieved the best results in comparison with all models,
especially the ANN model for predicting the concentrations
of CO, NO, NO2, and NOx pollutants.

V. CONCLUSION

A based Artificial Neural Network (OANN) model was
developed to enhance the existing ANN model by updating
the initial weights that connect the neurons in the network
using a Genetic Algorithm (GA). The OANN model was
used to predict the level of pollutants emitted by vehicles in
Kuala Lumpur, Malaysia. The OANN model was evaluated
using performance metrics and comparison with ANN, DT,
and RF models. The result shows the developed OANN model
performed better than the existing ANN, DT, and RF models
with the lowest regression metrics when compared.

Based on the literature review, the study of [45] predicts
the concentration of air pollutants at canyon street. Still, our
study predicts the level of air pollutants at the roadside, which
is an open space. [46] study was the closest study with our
study; the difference is, the study focuses more on the truck
vehicles and also used a one-month dataset. Additionally, they
predict the concentrations of CO pollutants. Our study added
three more pollutants namely, NO, NO2, and NOx. The study
of [48] used different variables such as length of the vehicle,
vehicle registration, and opacity. The study also has a higher
RMSE score than the RMSE values of our study.

The developed OANN model can help environmental agen-
cies monitor traffic-related air pollution levels efficiently and
take necessary actions to ensure the effectiveness of traffic
management policy. Moreover, the model can help decision-
makers mitigate traffic emissions to protect the health of the
citizens who are inhabiting very close to highways.

Admittedly, there are some limitations to this study. Firstly,
Some studies suggested that different types of fuel have dif-
ferent types of emissions, but the fuel type was not considered
in this study. The Jalan Kepong traffic census station was
selected, but the other stations were not considered. There
are many pollutants emitted by motor vehicles. However, the
developed OANN model was limited to predict the hourly CO,
NO, NO2, and NOx concentrations. It can be applied to the
other traffic pollutants as well. Furthermore, daily, weekly,
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monthly, or yearly predictions were not the focus of this
research. The prediction using only one type of vehicle was
not considered as well.
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