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Abstract: Electronic health records (EHRs) are an increasingly important source of information for
healthcare professionals and researchers. However, EHRs are often fragmented, unstructured, and
difficult to analyze due to the heterogeneity of the data sources and the sheer volume of informa-
tion. Knowledge graphs have emerged as a powerful tool for capturing and representing complex
relationships within large datasets. In this study, we explore the use of knowledge graphs to capture
and represent complex relationships within EHRs. Specifically, we address the following research
question: Can a knowledge graph created using the MIMIC III dataset and GraphDB effectively
capture semantic relationships within EHRs and enable more efficient and accurate data analysis?
We map the MIMIC III dataset to an ontology using text refinement and Protege; then, we create
a knowledge graph using GraphDB and use SPARQL queries to retrieve and analyze information
from the graph. Our results demonstrate that knowledge graphs can effectively capture semantic
relationships within EHRs, enabling more efficient and accurate data analysis. We provide examples
of how our implementation can be used to analyze patient outcomes and identify potential risk
factors. Our results demonstrate that knowledge graphs are an effective tool for capturing semantic
relationships within EHRs, enabling a more efficient and accurate data analysis. Our implemen-
tation provides valuable insights into patient outcomes and potential risk factors, contributing to
the growing body of literature on the use of knowledge graphs in healthcare. In particular, our
study highlights the potential of knowledge graphs to support decision-making and improve patient
outcomes by enabling a more comprehensive and holistic analysis of EHR data. Overall, our research
contributes to a better understanding of the value of knowledge graphs in healthcare and lays the
foundation for further research in this area.

Keywords: electronic health records; knowledge graphs; semantic relationships; data analysis;
MIMIC III; GraphDB; ontology

1. Introduction

Healthcare practitioners and researchers increasingly rely on electronic health records
(EHRs), which are digital versions of conventional paper-based medical data. A variety of
patient data are contained in EHRs, including demographics, medical history, diagnosis,
treatments, and results. In accordance with a study by [1], EHRs enhance patient safety
by giving healthcare providers rapid access to patient data, regardless of location or time,
which enables them to make more knowledgeable decisions regarding patient care. The
fact that EHRs give healthcare workers rapid access to patient data is another significant
advantage of using them. Ref. [2] claims that EHRs reduce pharmaceutical errors by giving
medical practitioners decision-support tools including drug interaction alerts and dose
suggestions. As they may be password-protected and encrypted, EHRs also offer a more
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secure access to patient data than conventional paper-based medical records, which lowers
the risk of theft or unauthorized access. EHRs also have the advantage of being easily
shared across healthcare professionals, which is crucial for patients who visit several experts
or receive treatment in several healthcare facilities. EHRs enhance care coordination and
lower the risk of medical mistakes. EHRs enhance communication between healthcare
professionals and patients, which results in better patient outcomes [3]. In order to create
more effective treatment regimens, healthcare providers can use EHRs to find patterns and
trends in patient data; hence, enhancing diagnosis by giving them access to patient data
from many sources [4–7]. This enables medical professionals to establish diagnoses and
create treatment strategies that are more effective. Therefore, from a research perspective,
EHRs are a useful data source for clinical trials, epidemiological studies, and healthcare
studies. Thanks to them, researchers now have quick and easy access to enormous volumes
of patient data, which can be used to identify risk factors, track the development of diseases,
and evaluate the effectiveness of different therapies with the potential to improve healthcare
quality while reducing costs [8]. Figure 1 depicts a typical patient data flow via an EHR,
from data entry through analysis.

Figure 1. A typical flow of patient data through EHRs, from data input to analysis.

Yet, despite the fact that EHRs have risen in significance as a source of data for
researchers and healthcare practitioners, evaluating them can be challenging due to the
variety of data sources and the vast quantity of information they contain. EHRs are usually
disorganized, hard to analyze, and fragmented. This poses a significant challenge for
academics trying to extract useful data from EHRs. The diversity of data sources is one of
the biggest obstacles to EHR analysis. Hospitals, clinics, and laboratories are just a few of
the places wherein EHRs are routinely gathered. As a result, the structure, nomenclature,
and data quality of EHR data can vary. This makes it challenging to efficiently combine
data from many sources and analyze them. The standardization of data items, language,
and data formats is crucial for effective EHR analysis [9]. The vast amount of data in
EHRs presents another difficulty for analysis. Millions of records may be present in EHRs,
making it challenging to retrieve pertinent data. This problem is made worse by the fact
that EHRs frequently lack a uniform format or coding system, which means they are
unstructured. Due to this, it may be challenging to locate and extract particular data points
from EHRs [10,11].

To overcome the challenges posed by the heterogeneity of data sources and the unstruc-
tured nature of EHRs, researchers have developed new tools and techniques for analyzing
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EHRs. These techniques include the use of machine learning algorithms, natural language
processing (NLP) techniques, and the development of standardized terminologies and
data formats, but while machine learning algorithms and NLP techniques have shown
promising results in analyzing EHRs, there are limitations to these methods. For instance,
the accuracy of these techniques heavily depends on the quality of the data and the com-
plexity of the task at hand. Moreover, the use of standardized terminologies and data
formats may not always be feasible due to the heterogeneity of data sources. In contrast,
knowledge graphs have emerged as a promising approach to overcome the limitations of
traditional EHR analysis methods. By representing medical knowledge in a structured and
semantically rich format, knowledge graphs can facilitate more effective data integration,
interoperability, and knowledge discovery. Furthermore, knowledge graphs enable the
integration of multiple types of data, including EHRs, clinical guidelines, and biomedical
literature, to provide a more comprehensive view of patient health.

To address these limitations, this study aims to design an OWL ontology of the MIMIC
III dataset and construct RDF mappings using the ontoText Refine tool [12]. The RDF data
will be visualized and queried using graphDB [13] and SPARQL, enabling a more efficient
and effective analysis of the data. The clinical validity of the ontology and RDF data will
be evaluated through expert review and comparison with existing clinical terminologies.
Additionally, privacy and security concerns will be addressed through appropriate data
handling and storage. The contributions of this study include:

1. Creating a more standardized and interoperable approach for representing and inte-
grating EHR data.

2. Enabling a more efficient and effective analysis of the data, which can help to iden-
tify patterns and relationships that are relevant to clinical decision-making and pa-
tient care.

3. Contributing to a more evidence-based approach to knowledge graph development
that can improve patient outcomes and reduce healthcare costs.

4. Advancing the field of knowledge graphs for EHR data by addressing key research
gaps and contributing to a more scalable, interoperable, and clinically valid approach
to knowledge graph development.

In the remainder of this paper, Section 2 describes how this study advances the subject
and gives a review of the literature on knowledge graphs in healthcare and EHR analysis.
The MIMIC III dataset, the ontology created for it using OWL in Protege, the RDF mapping
procedure used to convert the data to the ontology, and the building of the knowledge
graph using GraphDB are all described in Sections 3 and 4. Next, Section 5 outlines the
study’s findings, gives visualizations to highlight the semantic linkages found in the EHR
data, and provides examples of how the knowledge graph can be utilized to analyze patient
outcomes and spot potential risk factors. Section 6 presents the evaluation of our results.
Finally, the study’s key conclusions are outlined in Section 7 along with its importance for
enhancing EHR analysis and patient outcomes.

2. Literature Review
2.1. Potential of Knowledge Graphs in Healthcare

Machine learning algorithms have been increasingly used to analyze EHRs due to
their ability to identify patterns and make predictions based on large and complex datasets.
One study found that machine learning algorithms were effective at predicting unplanned
hospital readmissions, mortality rates, and length of stay for patients based on EHR
data [14]. Another study used machine learning algorithms to develop a predictive model
for identifying patients at high risk for developing sepsis, a potentially life-threatening
condition [15].

NLP techniques are another type of approach which can be used to extract structured
data from unstructured EHRs. By analyzing free-text clinical notes, NLP techniques
can identify key clinical concepts, such as diagnoses, procedures, and medications, as
well as extract structured data from unstructured sources. A study by [16] found that
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NLP techniques were effective at identifying medication-related adverse events from
unstructured EHR data.

In recent years, the use of knowledge graphs has gained popularity in various domains
due to their ability to represent complex data and relationships between entities. An
organized data model known as a knowledge graph captures entities, properties, and
relationships among them in a meaningful form. Google first proposed the concept of a
knowledge graph in 2012 [17], and it has since gained widespread use in a variety of fields.
The concept of knowledge graphs has its roots in the Semantic Web, which was introduced
by Tim Berners-Lee in 2001 [18]. The Semantic Web’s goal was to build a network of data
that both people and machines could access. Hence, a knowledge graph was proposed
in order to connect concepts and items in a more logical way, providing consumers with
more relevant search results. Since then, they have been adopted and applied in various
domains such as sales, logistics, healthcare, security and surveillance, and many others.

Knowledge graphs are also a recent advancement in EHR analysis [19]. A knowledge
graph is a structured representation of knowledge that captures relationships between
entities, such as diseases, medications, and symptoms [20,21]. By integrating EHR data
with external knowledge sources, knowledge graphs can be used to identify complex
relationships between clinical concepts and facilitate more accurate predictions. A study
by [22] demonstrated the feasibility of using knowledge graphs to identify patients at high
risk for hospital readmission.

A knowledge graph is a type of graph-based knowledge representation that uses
subject–predicate–object triples to organize information. In a knowledge graph, nodes
represent entities, which can include people, places, concepts, and more.The relationships
between these entities are represented by edges, which connect the nodes in the graph.
Each edge is represented as a subject–predicate–object triple, where the subject is an entity,
the predicate is an attribute or relationship, and the object is a value or another entity.
Triples are commonly formatted using angle brackets to enclose the subject, predicate, and
object, like so: <subject> <predicate> <object>.

Triple-based representations of information are common in many scenarios, particu-
larly those involving semantic data modeling. For example, in e-commerce, a triple may
represent a product, its price, and a customer’s purchase history. In social media, a triple
may represent a user, their friend list, and the posts they have made. By representing data
as triples, it becomes possible to query and reason about the data in a more structured and
efficient way.

A good example of a knowledge graph in action can be found in the MIMIC III
dataset, a large electronic health record database. In this dataset, patient information can be
represented as subject–predicate–object triples, where the subject is a patient, the predicate
is a medical condition or event, and the object is a value or another entity. For example, the
triple <Patient #12345> <was_admitted_on> <1 January 2016> may represent a patient’s
admission date. These triples can be mapped to RDF (Resource Description Framework)
triples, a standard for representing data on the web, which enables interoperability with
other knowledge graphs and datasets. Figure 2 illustrates how RDF triples can be used to
represent patient data in the MIMIC III dataset, where the subject is the patient’s unique
identifier, the predicate is an attribute or event, and the object is a value or another entity.
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Figure 2. The subject–predicate–object format of RDF triples in healthcare data.

Clinicians may easily see the connections between various entities by organizing
this data using a knowledge graph, and they can utilize this knowledge to inform their
diagnosis and treatment choices. Let us consider the case of a patient who is experiencing
chest pain. To diagnose the cause of the chest pain, a physician may need to consider a
wide range of possible conditions, such as angina, heart attack, pulmonary embolism, or
aortic dissection. Each of these conditions has its own set of symptoms, risk factors, and
treatments, and it can be challenging to keep track of all of this information and make a
definitive diagnosis. When a patient complains of chest pain and has a history of coronary
artery disease, the doctor may swiftly rule out angina as a probable cause of the pain and
suggest aspirin therapy as a possible course of treatment. In the discussed example, a node
may represent “Angina”, which could possibly be connected to other nodes, for example,
“Chest Pain”, “Shortness of Breath”, and “Coronary Artery Disease”, as these are all related
entities. Similarly, a node representing “Aspirin Therapy” could be connected to nodes
representing “Heart Attack”, “Stroke”, and “Blood Clots”, as these are all conditions that
can be treated with aspirin.

One of the main advantages of knowledge graphs is that they allow for the integration
of external knowledge sources with EHR data. This means that healthcare professionals can
draw on a broader range of information to inform their analysis, leading to more accurate
and comprehensive insights. Refs. [23,24] found that integrating external knowledge
sources with EHR data can help to identify potentially harmful medication combinations
that may not be apparent through EHR data alone. Another advantage of knowledge
graphs is that they can help to identify previously unknown relationships between clinical
concepts. This can be especially valuable for rare or complex conditions wherein traditional
data analysis methods may be insufficient. For example, a study by [25] demonstrated the
potential of knowledge graphs for identifying new gene–disease associations. However, so
far, the research on knowledge graphs for EHR data has been limited by scalability issues,
interoperability challenges, clinical validity concerns, and privacy and security risks. Many
existing knowledge graph models have been limited to smaller-scale datasets or specific
healthcare domains, and have not been widely adopted in clinical practice. Additionally,
there is a need for a more rigorous evaluation of knowledge graph models in real-world
settings, particularly in terms of their impact on patient outcomes and clinical decision-
making. The potential benefits of using knowledge graphs to represent data linked to
healthcare are shown in Figure 3.
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Figure 3. Applications of knowledge graphs in healthcare systems.

In healthcare, knowledge graphs have been used to represent medical knowledge and
patient data in a structured way. This has led to the development of clinical decision sup-
port systems that provide clinicians with evidence-based recommendations for diagnosis
and treatment. Knowledge graphs are also used to represent clinical guidelines, drug inter-
actions, and adverse events, which can help clinicians make informed decisions. They have
been increasingly utilized in the healthcare industry to represent and integrate data from
various sources. One use case of knowledge graphs in healthcare is clinical decision support
systems (CDSSs), which provide physicians with real-time recommendations for diagnosis
and treatment based on patient data. The studies conducted by [26,27] demonstrated the
effectiveness of using knowledge graphs to develop clinical decision support systems such
as for heart failure patients, resulting in a significant improvement in patient outcomes.
Another application of knowledge graphs in healthcare is drug discovery [28–30], wherein
they are used to integrate and analyze data from various sources, including scientific
literature, gene expression, and chemical properties of drugs. A study by [31] used knowl-
edge graphs to identify potential drug targets for Alzheimer’s disease, demonstrating the
potential for knowledge graphs to accelerate the drug discovery processes.

Furthermore, knowledge graphs have been used for disease surveillance and outbreak
prediction. Ref. [32] utilized knowledge graphs to integrate data from various sources, such
as social media and public health data, to predict the spread of COVID-19. The knowledge
graph provided a unified representation of the data, enabling an accurate prediction of
disease outbreaks. Additionally, knowledge graphs have been utilized for patient similarity
matching, enabling physicians to identify patients with similar characteristics and medical
histories for personalized treatment. A study by [33] developed a knowledge graph-based
framework for patient similarity matching, resulting in improved accuracy and efficiency
in personalized treatment.

The Electronic Health Record (EHR) system is the central platform wherein all patient
data are stored and managed. It contains rich sources of medical data such as patients’
medical history, allergies, medications, and diagnoses, which can be represented using
knowledge graphs. The use of knowledge graphs in EHRs can help identify relationships
between medical concepts and patient outcomes. Furthermore, it can help healthcare
providers deliver more personalized and effective care. For example, ref. [34] used a knowl-
edge graph approach to develop a system for identifying patients at risk of readmission,
which could help healthcare providers proactively manage patient care. A very similar
study was conducted by [35], wherein an approach to enrich EHR data with semantic
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annotations to ontologies to build a knowledge graph was developed. The knowledge
graph represented a patient’s ICU stay in a contextualized manner, which was used by
machine learning models to predict 30-days ICU re-admissions. Knowledge graphs can
assist in integrating and standardizing data from various sources, including electronic
medical records, laboratory results, and medical equipment. Interoperability and data
interchange between various healthcare systems and providers can be made easier as
a result. For instance, refs. [36,37] employed a knowledge graph approach to combine
data from many sources to enhance drug safety monitoring, which could aid healthcare
providers in identifying possible drug interactions and negative effects.

With approximately 40,000 patients who were admitted to an intensive care unit, the
MIMIC III (Medical Information Mart for Intensive Care III) dataset is a sizable and varied
collection of de-identified medical data (ICU). As an illustration, ref. [38] created a knowl-
edge graph to illustrate the connections between therapeutic ideas and patient outcomes
in the MIMIC III dataset. Comparing their knowledge graph to conventional machine
learning models, they discovered that their knowledge graph significantly increased the
accuracy of forecasting patient outcomes. In another study by [39], it was suggested that a
graph-based method for electronic health records question answering is more appropriate
than a table-based approach. To test their theory, they produced four EHR QA datasets
based on a table-based dataset MIMICSQL, and tested a simple Seq2Seq model and a
state-of-the-art EHR QA model on all datasets. The graph-based datasets facilitated up to
34% higher accuracy than the table-based dataset without any modification to the model
architectures. However, their study had limitations in terms of inference time, especially as
the graph size grows and scalability issues as their approach covers a smaller subset of the
MIMIC-III dataset.

Ref. [40] outlines a framework for safe medicine recommendations that involves
combining patient, disease, and medication information into a single low-dimensional
space. The approach converts medication recommendations into a link prediction method
while taking into account potential adverse drug responses using a heterogeneous graph
made from electronic medical records and medical knowledge graphs. According to
experimental findings, SMR provides more accurate recommendations than the state-of-
the-art techniques. In another work by [41], the authors propose the use of ontology
middleware to integrate IoT healthcare information systems into EHR systems. They
argue that the integration process faces challenges due to the lack of interoperability and
standardization among different healthcare systems, and propose ontology middleware as
a solution to provide a common vocabulary and set of rules for data integration. A study
by [42] focuses on curating a domain-specific healthcare knowledge graph for subarachnoid
hemorrhage. Another very relevant study is conducted by [43], wherein the authors explore
the use of semantic technologies to tackle the interoperability challenges in electronic health
records, enabling data integration, reuse, and processing by machine agents as well as
propose a transformation of heterogeneous and unstructured patient medical information
into a semantic knowledge graph that ensures high levels of interoperability. The pilot
study conducted at the UTPL Hospital demonstrated the feasibility of this approach and
the potential benefits of structured medical information for doctors, patients, researchers,
and governments. However, the authors acknowledge that one of the main challenges to
achieving the ambitious objective of managing health data effectively is integrating data
from heterogeneous sources and formats. This limitation can be addressed by using large
datasets to improve the accuracy and reliability of the semantic models used to represent
the medical information. Ref. [44] explains the creation and assessment of a system that
produces virtual clinical knowledge graphs (CKGs) from OMOP relational databases. The
FHIR–Ontop–OMOP system illustrates the potentials made possible by the compatibility
between FHIR and OMOP CDM by exposing the OMOP database as an FHIR-compliant
RDF graph. The FHIR Patient, Condition, Procedure, MedicationStatement, Observations,
and CodeableConcept instances were present in the CKGs produced from the Medical
Information Mart for Intensive Care (MIMIC-III) data source. The paper comes to the
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conclusion that CKGs that give a semantic foundation for explainable AI applications
in healthcare can be built using the FHIR–Ontop–OMOP architecture. The study’s main
drawback is that multiple data sources were not reviewed; instead, only one data repository
was used.

In conclusion, healthcare organizations continue to have a substantial barrier in inte-
grating and evaluating electronic health record (EHR) data despite the fact that these data
are becoming more widely available. A viable method for displaying and integrating EHR
data is the use of knowledge graphs, which show the connections between various clinical
concepts. However, scale limitations, interoperability difficulties, clinical validity issues,
and privacy and security hazards limit the present knowledge graph research employing
EHR data. Several of the currently used knowledge graph models are restricted to smaller
datasets or particular areas of healthcare and have not found widespread use in clinical
settings. More studies concentrated on knowledge graph models in practical contexts are
indeed required, especially in terms of their influence on patient outcomes and clinical
decision-making.

The aforementioned literature extensively examines the possibilities of utilizing knowl-
edge graphs in the healthcare industry, presenting a range of significant benefits. These
benefits encompass improved patient outcomes, enhanced research and development
efficacy, and better decision-making regarding diagnosis and treatment. By structuring
medical information in a systematic and standardized manner, knowledge graphs can
play a vital role in assisting doctors and researchers in comprehending complex data and
extracting valuable insights. Ultimately, this comprehensive approach holds the potential
to advance patient care and contribute to more effective healthcare practices.

2.2. Use of Knowledge Graphs in Other Domains

Knowledge graphs are being implemented and used more frequently in the sales,
marketing, and e-commerce industries through the digital representation of data on all the
entities involved (such as items, suppliers, manufacturers, and routes of transportation)
and the relationships among them. Knowledge graphs can help these sectors by providing
a consistent and organized representation of data, allowing them to better understand their
customers, products, and market trends, streamline supply chain management procedures,
spot possible bottlenecks, and enhance overall performance [45–51]. For the purpose of
assisting consumers in understanding electronic items, ref. [45] presents the idea of a
product knowledge graph. The research suggests a sales assistant, which employs semantic
advice to aid clients in comprehending the attributes and capabilities of a product. The
Internet of Things, for example, can be linked to the product knowledge graph in order
to enhance its functionality. Ref. [21] examines the implementation of a semantic content
and data value chain for online direct marketing and sales in the travel sector. Two other
studies by [52,53] present an ontology and knowledge graph in the area of manufacturing
and demand forecasting.

The transportation sector is another business wherein knowledge graphs are increas-
ingly in demand as a means to describe and evaluate complicated data pertaining to traffic
patterns, route optimization, and vehicle performance. Ref. [54] created a knowledge graph-
based framework for intelligent urban transportation systems. Ref. [55] offers a method
based on Semantic Web technology for adhering to EU transport data standards. It trans-
forms information from many Italian and Spanish stakeholders and builds a multi-modal
transport knowledge graph for smart querying, exploration, and value-added services.

Table 1 provides a comprehensive summary of various domains wherein knowledge
graph applications have been utilized, including healthcare, e-commerce, logistics, sales,
marketing, transportation, finance, agriculture, energy, government, and pharmaceuticals,
along with the entities, attributes, relationships, ontology, and related literature associated
with each domain.
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Table 1. Knowledge graph applications in various domains: a comprehensive summary.

Domain Entities Attributes Relationship Ontology Related
Literature

Healthcare
Patients, Medical History, Patient Visit LOINC [56–58]

Medications, Drug Effect, Treatment SNOMED CT [59–62]
Diseases Symptoms Diagnosis

E-commerce
Customers Purchases Retailers
Products Browsing history Manufacturers Schema.org [48,63,64]

Purchasing behavior Reviews Product categories GoodRelations [47,49,65]

Logistics
Shipments Delivery time Shippers W3C ODRL [66–68]

Warehouses Cost Consignees GID [69–71]
Carriers Performance Shipment locations

Sales
Customers Sales volume Sales reps Schema.org [21,45,72]
Products Revenue distributors GoodRelations [73–75]

Sales channels Conversion rate Sales regions

Marketing
Customers Click-through rate Advertisers Schema.org [21,76]
Campaigns Conversion rate Marketing channels FOAF [77–79]
Channels Engagement Target demographics [80]

Transportation
Vehicles Speed Transportation modes SUMO [81–83]
Routes Fuel efficiency Geographic locations OpenStreetMap [84–86]

Traffic patterns Congestion Traffic flow ONETT [87,88]

Finance
Stocks Price Companies XBRL [57,89,90]

Investments Market capitalization Industries FIBO [91–93]
Market trends Return on investment Economic indicators

Agriculture
Crops Yield Farming practices AgroPortal [94–96]

Soil quality Quality Weather conditions Agrisemantics Map
of Data Standards [53,97]

Weather patterns Nutrient content Soil composition AgroTagger

Energy
Power plants Energy output Energy sources CIM [98–100]

Energy consumption Efficiency Geographic regions OMS [101–103]
Distribution grids Emissions Infrastructure

Government
Policies Budgets Government agencies Open Government

Data [104–106]

Legislation Impact assessments Elected officials FOAF [107–109]
Public services Effectiveness Public opinion

Pharmaceutical
Drugs Efficacy Researchers Drug Ontology [25,110,111]

Diseases Side effects Patients NDF-RT [112–114]
Clinical trials Dosage Medical institutions

In conclusion, the use of knowledge graphs in healthcare, particularly in electronic
health records (EHRs) and the MIMIC III dataset, has demonstrated their potential in
improving patient care and outcomes through the structured representation of medical
knowledge and patient data. However, there are still research gaps to be addressed. Existing
ontologies for the MIMIC III dataset may have limitations in terms of detail, coverage,
and suitability for specific research questions, and the use of semantic technologies may
be limited for certain analyses or research questions. Reproducing ontology, mapping,
and analysis work on the dataset may also pose challenges, while existing work may be
focused on specific research questions or use cases. To address these gaps, future research
can focus on creating a more comprehensive and tailored ontology, demonstrating the
utility of semantic technologies, providing transparent methodologies for ontology creation,
mapping to RDF, and querying using SPARQL, as well as exploring new research questions
that have yet to be addressed. Such efforts will further advance our understanding and
utilization of knowledge graphs in healthcare and other domains.
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3. Methodology

To build an electronic health record (EHR) knowledge graph, we followed a method-
ology that involved ontology development, data processing, graph representation, and
SPARQL querying. Figure 4 illustrates the overall architecture of our methodology, from
processing the CSV files to developing the ontology, mapping the data to RDF format,
representing it as a graph, and querying it using SPARQL. We first developed an ontology
using Protégé to define the entities and relationships in the EHR domain. This allowed us
to create a standardized vocabulary that could be used to describe the EHR data. Next, we
processed the EHR dataset using Ontotext Refine to map it into RDF format and represent
it as a graph. This allowed us to represent the EHR data as a set of nodes and edges, which
could be easily queried using SPARQL.

Once the EHR data was represented as a graph, we used SPARQL to query the
graph and extract useful information. We developed several use cases (few included in
Appendix A) to demonstrate the potential applications of our knowledge graph. Subse-
quently, we utilized a subset of these use cases to formulate queries that aimed to identify
trends and patterns within the data. Through this process, we sought to evaluate the
effectiveness and efficiency of our proposed research.

Figure 4. Overall framework of our methodology.

4. Data Selection

For our study, we selected the MIMIC III dataset for building an EHR knowledge
graph. The MIMIC III dataset [115] is a large, publicly available database of de-identified
electronic medical records from patients admitted to the Beth Israel Deaconess Medical
Center between 2001 and 2012. It contains detailed clinical data, including demographic
information, diagnoses, procedures, medications, and vital signs, which makes it an ideal
dataset for building an EHR knowledge graph. The dataset is provided in the form
of CSV (comma-separated values) files, which are organized by clinical domain (e.g.,
admissions, diagnoses, prescriptions, etc.). There are a total of 26 CSV files in the dataset
with sizes ranging from a few kilobytes to several gigabytes. The total size of the dataset is
approximately 11 gigabytes.
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Before processing the dataset with Ontotext Refine, we first built an ontology using
Protégé [116], which defined the entities and relationships between them. We used reason-
ing to ensure the consistency and completeness of the ontology. Once the ontology was
complete, we processed the dataset using Ontotext Refine to map it into RDF format, which
allowed us to represent the data as a graph.

4.1. Ontology Development

Ontology is a formal way of representing knowledge that defines a set of concepts
and categories, along with their properties and relationships. It provides a standardized
vocabulary that can be used to describe the entities and relationships within a domain,
such as electronic health records. Ontologies are used in various applications, including
semantic search, natural language processing, and knowledge management.

In the ontology development step, we defined the classes, properties, and relationships
between the entities in our MIMIC III dataset. We used Protégé, an open-source ontology
editor, to create the ontology.

Initially, we established the top-level class, OWLThing (a built-in class of OWL), which
forms the basis of the class hierarchy. Then, the major classes such as patient, admission,
medication, and diagnosis were defined. We also defined properties that describe the
relationships between the entities, such as hasAdmission, hasMedication, and hasDiagnosis.
Figure 5 shows the class hierarchy structure we defined on Protégé, where each class and its
subclasses are represented. Additionally, Table 2 explains each class and the corresponding
files in the MIMIC III dataset. Once the classes have been defined, the next step is to create
object properties, which specify the relationships between the classes. In Table 3, instances
where properties have two domains, such as “HAS_MEDICATION” with “Admission” and
“ICU_Stays”, indicate a union of classes as the interpretation. This means that the property
can be associated with either the “Admission” class or the “ICU_Stays” class. This allows
for flexibility in linking medications to either type of medical encounter. Figure 6 shows
the VOWL visualization graph of the object properties, and Table 3 provides information
about the domain and range of each object property.

4.2. Demonstration of MIMIC Ontology Instances and Statements

To provide a clearer understanding of the MIMIC ontology, examples of instances
and statements using the ontology’s classes and properties can be presented. For instance,
consider the Patient class, which can have a unique patient ID as an instance. This patient
ID can be linked to an Admission class instance using the HAS_ADMISSION property,
indicating that the patient has been admitted to the hospital. An Admission instance can
further be linked to an ICU Stay instance using the HAS_ICU_STAY property, indicat-
ing that the admission involved an ICU stay. The ICU Stay instance can be linked to a
Diagnosis instance using the HAS_DIAGNOSIS property, indicating that the ICU stay is
associated with a diagnosis. Similarly, the ICU Stay instance can be linked to a Procedure
instance using the HAS_PROCEDURE property, indicating that the ICU stay involved a
medical procedure.

Moreover, consider the Lab Event class, which can have a specific lab test or measure-
ment as an instance. This lab test or measurement can be linked to a Lab Item class instance
using the HAS_LAB_ITEM property, indicating that the lab event is associated with a
specific lab item. The Lab Event instance can also be linked to a Patient, Admission, or ICU
Stay class instance using the HAS_LAB_RESULT property, indicating that the lab event is
associated with a patient, admission, or ICU stay. Similarly, the Medication class can have
a specific drug or medical device as an instance, which can be linked to an Individual Item
class instance using the HAS_INDIVIDUAL_ITEM property, indicating that the medication
involves a specific item.
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Figure 5. Class hierarchy of ontology in Protege.

4.3. RDF Mapping

For this research, we used the Ontotext Refine tool to construct RDF triples from
the MIMICIII dataset. RDF triples are a way of representing information using three
components: subject, predicate, and object. For example, in the context of the MIMICIII
dataset, the subject may represent a patient, the predicate may be a characteristic or event
related to that patient, and the object is a value or description of that characteristic or event.

After creating the OWL ontology for the MIMIC-III dataset, which defined the classes,
properties, and relationships between them and provided a structured vocabulary to
represent the data elements, we used the Ontotext Refine tool to generate RDF triples for
each CSV file in the dataset. To do this, we first mapped the columns in the CSV file to
the properties in the OWL ontology using a mapping file. To make the mapping process
easier, we defined a prefix for our RDF subject, predicate, and object, using the shortform
“mc”. Additionally, we defined a base IRI of “http://mimicIII.com/base/.” to ensure
that all of our URIs were unique and consistent. Once the mapping file is created, we
can use the Ontotext Refine tool to generate RDF triples for each row in the CSV file. The
tool uses the mapping file to create triples in the format of subject–predicate–object (SPO),
wherein the subject is the unique identifier for each row, the predicate is the property
from the OWL ontology, and the object is the value of the data element in the CSV file. To
further illustrate the process of RDF mapping, we provide two examples in Figures 7 and 8.
The first subfigure shows the RDF mappings for the Admission.csv file, while the second
subfigure shows the RDF mappings for the Prescription.csv file.

http://mimicIII.com/base/
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Figure 6. Visualisation of Ontology with object properties using VOWL.
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Table 2. Explanation of the class hierarchy as defined in Protege.

Class Description Related CSV File

Patient
Information about the patients’ demographics, such as

age, gender, ethnicity, and marital status is recorded using
datatype properties attached to this class

PATIENTS.CSV

Admission

Information about the admission and discharge dates, as
well as details about the patient’s medical condition and
treatment recorded using datatype properties attached to

this class

ADMISSIONS.CSV

CareGivers
Information about the caregivers responsible for a

patient’s care recorded using datatype properties attached
to this class

CAREGIVERS.CSV

Patient
Care(ICD_Diagnosis,

ICD_Procedure

Information about patient’s medical surgeries,
interventions and medical conditions recorded using

datatype properties attached to this class
ICD_Dignosis.CSV, ICD_Procedures.CSV

Codes (CPT, Drug,
ICD Dignosis and
ICD Procedures)

Information about description of all codes recorded using
datatype properties attached to this class

D_CPT.CSV,D_ICD_DIAGNOSES.CSV,
D_ICD_PROCEDURES.CSV,DRGCODES.CSV

ICU_Stays
Information about ICU stay, including admission and
discharge dates, length of stay, and ICU type recorded

using datatype properties attached to this class
ICUSTAYS.CSV

CHARTEVENTS.CSV, CPTEVENTS.CSV,

Events (Chart, CPT,
Input, Lab,

Microbiology, Note,
and Output)

Information about all clinical and procedural events and
observations recorded using datatype properties attached

to the subclass

INPUTEVENTS_CV.CSV,
INPUTEVENTS_MV.CSV,

LABEVENTS.CSV, NOTEEVENTS.CSV,
MICROBIOLOGY.CSV,
OUTPUTEVENTS.CSV

Transfers
Information about patient transfers between hospital

locations recorded using datatype properties attached to
this class

TRANSFERS.CSV

Services
Information about hospital services provided to the

patient during their hospital admission recorded using
datatype properties attached to this class

SERVICES.CSV

Prescription Information about medications prescribed to patients
recorded using datatype properties attached to this class PRESCRIPTION.CSV

Callout Information about patient requests for consultations
recorded using datatype properties attached to this class CALLOUT.CSV

Table 3. Object properties and domains in EHR ontology.

Property Domain Range

HAS_ADMISSION Patient Admission admissions.csv

HAS_ICU_STAY Admission ICU_Stays icustays.csv

HAS_DIAGNOSIS Admission, ICU_Stays Diagnosis diagnoses_icd.csv

HAS_PROCEDURE Admission, ICU_Stays Procedure procedures_icd.csv

HAS_MEDICATION Admission, ICU_Stays Prescription prescriptions.csv

HAS_LAB_EVENTS Patient, Admission, ICU_Stays Lab_Events labevents.csv

HAS_NOTE Patient, Admission, ICU_Stays Note_Events noteevents.csv

HAS_TRANSFER Admission, ICU_Stays Transfer transfers.csv
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Table 3. Cont.

Property Domain Range

HAS_SERVICE Admission, ICU_Stays Service services.csv

HAS_LAB_ITEM Lab_Events Lab_Items d_labitems.csv

HAS_INDIVIDUAL_ITEM Medication, Procedure Individual Item d_items.csv

HAS_CAREGIVER Patient, Admission, ICU_Stay,
Procedure Caregiver caregivers.csv

HAS_CPT_CODE Procedure CPT Code d_cpt.csv

HAS_DRG_CODE Admission DRG Code in the Codes class drgcodes.csv

HAS_ICU_PROCEDURE_CODE ICU_Stays ICU Procedure d_icd_procedures.csv

HAS_ICU_DIAGNOSIS_CODE ICU_Stays ICU Diagnosis Code d_icd_diagnoses.csv

HAS_PATIENT_CARE Patient Patient Care patient.csv

HAS_ICD_DIAGNOSIS Patient Care ICD Diagnosis diagnoses_icd.csv

HAS_ICD_PROCEDURE Patient Care ICD Procedure procedures_icd.csv

Figure 7. RDF mapping for Admission.csv.

Figure 8. RDF mapping for Prescription.csv.
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To generate the RDF mappings, we used a SPARQL construct query in GraphDB
which retrieved the data from the CSV files and mapped it to the OWL ontology. The
generated RDF triples were then visualized using the visual RDF mapper in GraphDB.
Figures 9 and 10 show an example of the generated RDF graph for the Admission and
Prescription tables.

The queries construct statements using the MIMIC ontology’s properties and classes.
The PREFIX lines define namespace prefixes for the query, which are used to simplify
the code and make it easier to read. The BASE line defines the base URI for the MIMIC
ontology. The CONSTRUCT block specifies the RDF triples to be created in the new graph.
The subject of each triple is a variable that starts with a “?”. The predicate and object of
each triple are properties and values that belong to the MIMIC ontology. The WHERE
block contains a SERVICE clause that specifies the SPARQL endpoint which the data will
be retrieved from. The BIND statements assign IRIs to the variables based on the mappings
defined in the query. The resulting IRIs are used as the subject, predicate, and object of the
RDF triples constructed in the CONSTRUCT block. Finally, queries retrieve data from a
SPARQL endpoint and use it to construct new RDF graphs based on the MIMIC ontology.

Figure 9. Sample visual graph for admission.

Figure 10. Sample visual graph for prescription.

This process allowed us to convert the MIMIC-III dataset into a linked data format
which can be queried using SPARQL queries and linked to other datasets in the Seman-
tic Web.
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5. Results

SPARQL is a powerful query language used for querying RDF data. In this study,
we explored the effectiveness of SPARQL queries on the MIMIC-III dataset for extracting
meaningful insights. Some of the SPAQRL queries we performed are outlined below.

5.1. Finding Patients with Diabetes

In order to find patients with diabetes in the MIMIC-III dataset, we executed the
following SPARQL query as shown in Figure 11:

Figure 11. Querying for all diabetes patients.

5.2. Finding Patients Who Have Been Diagnosed with Both Hypertension and Diabetes

In this scenario, as shown in Figure 12, we want to find patients who have been
diagnosed with both hypertension and diabetes. We have two data files, one containing
patient data and another containing diagnosis data. The patient data file includes the
patient’s ID and date of birth, while the diagnosis data file includes the diagnosis ID,
patient ID, and diagnosis code.

Figure 12. Querying for all diabetes and hypertension patients.

5.3. Finding Patients Who Have Been Admitted to the ICU Multiple Times

In this scenario, as shown in Figure 13, we want to find patients who have been
admitted to the ICU multiple times. We have two data tables, one containing patient
data and another containing ICU stay data. The patient data file includes the patient’s
ID and date of birth, while the ICU stay data file includes the stay ID, patient ID, and
admission date.

Figure 13. Querying for all patients admitted to ICU multiple times.
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Overall, our SPARQL queries demonstrate the flexibility and power of semantic
technologies for querying large and complex datasets such as MIMIC-III. By leveraging RDF
and SPARQL, we were able to easily and effectively search for specific patient populations
based on various medical conditions and procedures. These queries can provide valuable
insights for clinical research and decision-making.

6. Discussion
6.1. Query Performance Evaluation

In this study, we evaluated the query performance of our proposed ontology-based
approach. We used a dataset from the MIMIC-III clinical database and executed a set of
sample queries. However, it is important to note that our study is preliminary in nature and
our focus was on demonstrating the usefulness and feasibility of the proposed ontology
and knowledge graphs in this domain. Therefore, we used a limited set of sample queries
to test the performance of the ontology. Specifically, we used queries related to patient
demographics, diagnoses, and medications. The average query execution time ranges are
less than 0.15 s, which we believe is a significant improvement over existing approaches.
However, we acknowledge that query performance may vary depending on the size and
complexity of the data, as well as the specific queries used.

6.2. Comparison with Existing Approaches

After constructing the ontology and loading the data into GraphDB, we tested the
performance of the system by executing various SPARQL queries. We compared our
approach with a traditional relational database management system, MySQL. In MySQL,
we had to define queries for each search task, which could become complex and time-
consuming for larger datasets. In contrast, with GraphDB, we were able to easily navigate
the ontology and data through the graph visualization, which allowed for a more intuitive
and user-friendly experience. For example, by clicking on the “Pneumonia” node in the
graph, all the patients with pneumonia were immediately displayed without having to
run an explicit query. This feature has the potential to greatly enhance the usability of the
system in a healthcare setting, where physicians and researchers may not have extensive
experience with database query languages. Table 4 presents a average execution time
comparison of simple queries from one table executed on GRAPHDB and MySQL.

Table 4. Query execution time comparison between GraphDB and MySQL using MIMIC-III dataset.

Database Query Execution Time (s)

GraphDB SELECT ?patient WHERE { ?patient mc:gender mc:Male . ?patient mc:race mc:White .
?patient mc:marital_status mc:Married } 0.11

MySQL SELECT * FROM PATIENTS WHERE gender=’M’ AND race=’White’ AND
marital_status=’MARRIED’ 1.33

GraphDB SELECT ?diagnosis WHERE { ?diagnosis mc:icd9_code “41401” } 0.15

MySQL SELECT * FROM DIAGNOSES_ICD WHERE icd9_code=’41401’ 1.21

GraphDB SELECT ?patient ?caregiver WHERE {?patient rdf:type :Patient .?patient :hasCaregiver
?caregiver . ?caregiver :cgid “16175” .} 0.44

MySQL SELECT p.*FROM Patients p JOIN Caregivers c ON p.CaregiverID = c.CaregiverID WHERE
c.CGID = 16175; 1.01

The bar chart in Figure 14 illustrates the stark difference in query execution times between
GraphDB and MySQL, with GraphDB consistently demonstrating superior performance. The
significantly shorter execution times in GraphDB highlight its efficacy in efficiently processing
queries, showcasing its advantage over MySQL in terms of query efficiency.
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Figure 14. Bar chart illustrating the difference in query execution times between GraphDB and
MySQL using three sample queries.

6.3. Interoperability

Interoperability is a key advantage of our proposed approach, as it allows for a
seamless integration with other clinical data sources and knowledge bases. Our ontology is
based on standard semantic web technologies, such as RDF and OWL, which facilitate data
integration and knowledge sharing.

We acknowledge that the interoperability of our approach may depend on the availabil-
ity and quality of other clinical data sources and ontologies. However, we believe that our
approach provides a baseline framework for integrating and harmonizing heterogeneous
clinical data sources, which is a critical need in the field.

7. Conclusions

Our work on implementing an EHR knowledge graph using the MIMIC III dataset,
GraphDB, and ontology created with Protégé has several significant contributions to the
healthcare industry. Firstly, our study demonstrates the immense potential of knowledge
graphs in capturing and visualizing complex interactions in EHRs, enabling healthcare
practitioners to discover patterns, risk factors, and adverse medication responses. Moreover,
our implementation of the EHR knowledge graph significantly reduces the time required to
perform queries, with an average query execution time of less than 0.15 s. This improvement
in query performance can greatly enhance decision-making in healthcare settings, leading
to more efficient and effective patient care.

Furthermore, our study provides a framework for developing automated ontology
building techniques, which can significantly reduce the time and effort required to create
ontologies for different EHR databases. This development can potentially overcome the
significant limitation of subject-matter expertise required for ontology building, which
has traditionally limited the scalability of EHR knowledge graphs. By expanding the
EHR knowledge graph to include patient-generated data, genetic data, and socioeconomic
determinants of health, we can gain a more comprehensive understanding of patient
health and provide personalized medication. In terms of limitations, it is worth noting
that ensuring interoperability with external datasets and applications is an important
consideration for the practical implementation of our EHR knowledge graph. As a next step,
we plan to explore linking elements of our ontology and knowledge graph with standard
external vocabularies (such as SNOMED CT and LOINC) to achieve this interoperability.
This development will allow us to expand the scope of our EHR knowledge graph and
potentially enable the integration of data from different EHR databases, ultimately leading
to more comprehensive patient care.

Looking ahead, our exploration of machine learning algorithms to detect new risk
factors and forecast patient outcomes represents a significant future contribution to the
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healthcare industry. This development has the potential to revolutionize decision-making
in healthcare settings, enabling healthcare practitioners to identify at-risk patients earlier
and provide more personalized and effective treatments. With the continued development
and expansion of EHR knowledge graphs, we believe that the potential for improving
patient outcomes in the healthcare industry is immense.

In summary, our work on implementing an EHR knowledge graph and demonstrating
its potential to capture and visualize complex interactions in EHRs, significantly improve
query performance, and develop automated ontology building techniques, has significant
contributions to the healthcare industry. The EHR knowledge graph has the potential to
revolutionize decision-making in healthcare settings, leading to more efficient and effective
patient care, ultimately leading to better patient outcomes.
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Appendix A

The following table provides a selection of sample use cases that were developed
to showcase the potential applications of our knowledge graph. These use cases were
designed to demonstrate the capabilities of the graph in capturing and representing com-
plex relationships within Electronic Health Records (EHRs). It is important to note that,
while some of these use cases were implemented and executed as RDF tuples to test the
functionality of the knowledge graph, they represent a subset of the possible scenarios that
can be explored using the graph.

Table A1. Sample use cases demonstrating the potential applications of the knowledge graph in
electronic health records (EHRs).

Use Case Description Example Potential Benefits for Physicians

Patient
Demographics

Retrieve demographic
information for patients,

including age, gender, ethnicity,
and marital status

Identify all patients with White
ethnicity, aged between

30 and 40 years, and married

Better understanding of the patient
population they are treating

Length of Stay
Analysis

Analyze the duration of hospital
stays for patients in different
admission categories or with

specific diagnoses

Calculate the average length of
stay for patients admitted with a

diagnosis of sepsis in the
Intensive Care Unit (ICU)

Assess the effectiveness of treatment
protocols and make data-driven

decisions regarding resource
allocation and discharge planning



Healthcare 2023, 11, 1762 21 of 25

Table A1. Cont.

Use Case Description Example Potential Benefits for Physicians

Disease Diagnosis
Tracking

Track and analyze the
prevalence and distribution of

different diagnoses across
patient admissions

Determine the frequency of the
diagnosis “Acute Myocardial

Infarction” across different age
groups and genders

Gain insights into the prevalence
and distribution of specific diseases

within their patient population

Medication
Prescriptions

Examine medication
prescription patterns and

identify commonly prescribed
drugs for specific conditions

Identify the most commonly
prescribed medication for
patients diagnosed with

diabetes in the outpatient setting

Utilize this information to ensure
adherence to evidence-based

treatment
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