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Abstract: Cell counting in fluorescence microscopy is an essential task in biomedical research for
analyzing cellular dynamics and studying disease progression. Traditional methods for cell counting
involve manual counting or threshold-based segmentation, which are time-consuming and prone to
human error. Recently, deep learning-based object detection methods have shown promising results
in automating cell counting tasks. However, the existing methods mainly focus on segmentation-
based techniques that require a large amount of labeled data and extensive computational resources.
In this paper, we propose a novel approach to detect and count multiple-size cells in a fluorescence
image slide using You Only Look Once version 5 (YOLOv5) with a feature pyramid network (FPN).
Our proposed method can efficiently detect multiple cells with different sizes in a single image,
eliminating the need for pixel-level segmentation. We show that our method outperforms state-
of-the-art segmentation-based approaches in terms of accuracy and computational efficiency. The
experimental results on publicly available datasets demonstrate that our proposed approach achieves
an average precision of 0.8 and a processing time of 43.9 ms per image. Our approach addresses the
research gap in the literature by providing a more efficient and accurate method for cell counting in
fluorescence microscopy that requires less computational resources and labeled data.

Keywords: deep learning; automated cell counting; feature pyramid network; YOLOv5; fluorescence
images

1. Introduction

Cell counting is a fundamental task in biological research and clinical practice. It is
an essential step for various applications, such as cell culture [1–3], drug discovery [4],
disease diagnosis [5–7], and treatment monitoring [8,9]. Accurate cell counting is crucial
for understanding cellular behavior, identifying cellular abnormalities, and evaluating
the efficacy of interventions [10]. Traditionally, cell counting is performed manually by
trained personnel using a microscope and a counting chamber, which is time-consuming,
labor-intensive, and prone to errors [11]. Therefore, there is a growing need for robust and
automated cell counting methods [12,13].

Several traditional methods have been developed for cell counting, such as manual
counting [14,15], hemocytometry [16,17], and flow cytometry [18]. Manual counting is the
most straightforward method, but it is subject to inter-observer variability, low throughput,
and poor reproducibility [19]. Hemocytometry, however, is a more accurate and reliable
method, but it is still labor-intensive and requires skilled operators [15,20]. Flow cytometry
is a high-throughput and automated method, but it requires expensive equipment and
specialized training [21]. Moreover, these methods are often limited by their ability to
distinguish different cell types and sizes, especially in complex biological samples.
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Fluorescence cell counting is a more advanced method that uses fluorescent dyes
to label specific cell populations and quantify them with the help of fluorescence mi-
croscopy [22,23]. This method allows for higher accuracy and specificity, especially in
complex biological samples, but it requires specialized equipment and expertise. Figure 1
adapted from [24] shows the fluorescence microscopy image depicting A549 human lung
adenocarcinoma cells after their incubation, fluorescence microscopy enables the segmenta-
tion of individual cells and the removal of artefacts such as cellular detritus by highlighting
the contour of objects based on their fluorescent signal. The picture demonstrates how
fluorescence-based cell counting methods can be used to visualise and examine partic-
ular cell populations. Fluorescence cell counting has gained popularity as a method in
biological research due to the expanding availability of fluorescent dyes and imaging
technologies [25].

Figure 1. Fluorescence microscopy images of A549 human lung adenocarcinoma cells after their
incubation with Si–NH2Flu nanoparticles and Si–NH2·ODN(3)Flu nanocomplexes. (a) Samples that
were fluorescein-labeled were found in the green channel (488 nm). (b) The blue channel (405 nm)
revealed cell nuclei stained with DAPI. (c) All channels superimposed. (Scale bar: 25 m for all). Figure
adapted from [24].

Moreover, it can be said that conventional cell counting techniques have a num-
ber of drawbacks and difficulties, including poor accuracy, slow throughput, high cost,
and subjectivity. Additionally, they might not be appropriate for complex samples, such
as tissues, cell aggregates, or mixed cell populations [26]. Therefore, more accurate and
automated cell counting methods utilizing a fluorescence mechanism are becoming more
and more popular.

More reliable and automated cell counting techniques have emerged as a result of
recent developments in computer vision [27] and machine learning [28]. These techniques
make use of the capabilities of deep learning algorithms to find and count cells in images
from fluorescence microscopy. Deep learning-based approaches for counting are more
precise and reproducible than conventional approaches because they can handle a wide
range of objects with varying kinds, sizes, and complex materials and textures [29]. When
we look at the literature on cell counting using automated tools, the bulk of the methods
that are currently being used, however, rely on segmentation-based tactics, which call for a
lot of training, tuning, and parameter optimization [30–33]. These techniques utilize image
processing algorithms such as edge detection, thresholding, morphological operations, and
watershed segmentation to separate cells from the background and from each other [34–38].
While these techniques have shown promising results, they are often computationally
intensive and require skilled personnel for optimization and validation. More advanced
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methods use machine learning algorithms such as a CNN to accurately identify cells. One
such latest algorithm is YOLO (You Only Look Once), which uses a single neural network
to detect and classify objects in real time [39–41]. Although it has been widely used in
object detection and counting tasks [42–46] and [47], its application in automated cell
counting is still being explored, and there is potential for further research in this area. Using
a single neural network, the real-time object detection and counting method forecasts the
bounding boxes and class probabilities of objects in a picture. It operates by dividing the
input image into a grid and forecasting bounding boxes and class probabilities for each grid
cell. This can thus make it useful for cell counting, where the objective is to identify and
count multiple cells in a given fluorescence image. Moreover, feature pyramid networks
have also been employed as an effective method in improving the object detection accuracy
of YOLO by leveraging feature maps at different resolutions [48].

In this study, we propose to use YOLOv5 with a feature pyramid network to detect
and count multiple-sized cells in fluorescence microscopy images. An FPN is a popular
architecture for object detection that utilizes feature maps of different resolutions to improve
the accuracy of object detection. We believe that the combination of YOLOv5 and an FPN
can enhance the detection and counting of cells of different sizes in a single image.

Our main contributions are highlighted as follows:

• We utilized YOLOv5, a state-of-the-art object detection algorithm, for cell counting in
fluorescence microscopy images.

• We employed the FPN as a feature extractor to handle cells of different sizes in the
images.

• We annotated the cell images with bounding boxes using a labeling tool for training
the YOLOv5 model.

• We augmented the original dataset of 283 images to 600 images with rotation, scaling,
and flipping to improve the model’s performance.

• We evaluated the performance of the YOLOv5 model with an FPN on the cell counting
task and compared it to other YOLOv5 model versions.

The remainder of this paper is structured in the following manner. Section 2 presents
a comprehensive literature review of previous studies on cell counting using traditional
methods and deep learning techniques. Section 3 introduces the two main components
of our approach, YOLO and the FPN, and explains their technical details. Section 4
outlines our proposed approach in detail, including dataset annotation, data preprocessing,
customizing YOLO’s hyperparameters, and the experimental settings. Section 5 presents
the results of our experiments and an evaluation of our approach’s performance in terms of
accuracy and efficiency. Section 6 discusses the implications of our findings and compares
our approach’s performance with existing methods. Finally, Section 7 concludes the paper
by summarizing the main contributions, discussing the limitations and future directions,
and providing a final remark on the potential applications of our approach in the field of
cell counting.

2. Literature Review

In many biomedical applications, including cancer detection, drug discovery, and toxi-
city testing, cell counting is a critical step [45,49–51]. Using a microscope and a counting
chamber, skilled workers manually count cells according to traditional methods [18]. Al-
though manual cell counting is the industry standard, it is labor-intensive, time-consuming,
and prone to human error, making it challenging to standardize and replicate results across
various samples [52]. Additionally, it can be difficult to distinguish between cells that are
the same size and shape or that group together, which can result in errors in cell counts [53].
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Automated cell counting techniques have been developed to address these issues [34,54,55].
One of the earlier techniques was based on electronic particle counting, which detects cells
as they pass through a small aperture using impedance or light scattering. Although this
method is quick and precise, it cannot tell the difference between live and dead cells and
needs a high cell density [56].

The examination of digital photographs of cells using computer algorithms is a differ-
ent automated way for counting the number of cells [57]. Direct and indirect procedures
make up the two basic groups into which these techniques can be divided. With direct
methods, cells are marked with stains or dyes and counted in accordance with their fluo-
rescence or absorbance. The investigation of morphological characteristics of cells, such
as their size, shape, and texture, is utilized in indirect approaches for cell counting and
can be used to recognize and count cells in digital images. Deep learning, machine learn-
ing, and image processing-based methods are another way to categorize automated cell
counting techniques. The classification tree is shown in Figure 2.

Figure 2. Classification of Methods of Automated Cell Counting.

Image processing based methods involve the application of mathematical operations
to enhance, segment, and analyze cell images [58,59]. These methods are computationally
efficient but require expert knowledge to design and tune the algorithms [60]. Machine
learning based methods use statistical models to learn patterns and features from the data to
classify and count cells. These methods require extensive feature engineering and parameter
tuning, making them time-consuming and computationally expensive [61,62]. On the other
hand, deep learning-based methods use artificial neural networks with multiple layers
to automatically learn and extract features from the data. These methods have shown
superior performance in terms of accuracy and speed compared to other methods. They
have shown remarkable results in various other domains also, particularly in medical
image analysis [63–65]. Table 1 summarizes the performance of the three methods in
terms of advantages and limitations and also highlights their applications in cell detection
and counting.
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Table 1. Pros and Cons of Automated Cell Detection and Counting Methods.

Methods Advantages Limitations Applied to Cell
Detection and Counting

Image
Processing based

Simple and computationally efficient Limited accuracy and robustness [54,66,67]

No need for large datasets or
complex algorithms

Struggle with complex cell morphologies
and low SNR

Easy to implement and interpret

Machine
Learning based

Can handle complex cell morphologies and
low SNR Requires labeled training data [52,61,68]

More accurate and robust than image
processing based

Sensitive to variability in data and
imaging protocol

Can be adapted to different
imaging modalities

Requires feature engineering, which can
be time-consuming

Deep
Learning based

State-of-the-art accuracy for cell detection
and counting

Highly dependent on the quality and
quantity of training data [69–71]

Highly robust to variability in data and
imaging protocol Can be computationally expensive

Does not require feature engineering, saving
time and effort

May be less interpretable than
traditional methods

Morelli et al. in [70] suggest using deep learning to automate cell counting in fluores-
cence microscopy. To localize cells and obtain counts as the number of observed objects,
the method employs a fully convolutional network known as c-ResUnet. Kayasandik et al.
in [72] provide a unique image analysis framework for automatic astrocyte recognition and
segmentation in 2D fluorescent brain tissue images. The method contains two significant
innovations: an automated cell detection method based on multiscale directional filters
and astrocyte segmentation using a modified CNN architecture. In another work by [73],
a deep learning-based approach is proposed for creating pseudo-nuclear stained images
from phase contrast images of cells. To recognize the nuclei of cells, the suggested method
employs a simple deep neural network. The suggested approach also determines the rela-
tive position of the cells, counting the number and tracking them for different cell densities.
Using fluorescence microscopy pictures, Ref. [74] demonstrates an automated workflow
for recognizing and counting Mycobacterium tuberculosis (Mtb) germs in sputum samples.
The pipeline is divided into four stages: annotation with generative adversarial networks
(GANs), extraction of key picture patches, classification of extracted patches, and regression
to obtain the final bacteria count. In a very similar work, Ref. [75] proposes a framework
that uses a DCNN for automated cell counting in time-lapse microscopy images of devel-
oping human embryos. The study uses a dataset of 265 human embryos to demonstrate the
effectiveness of the approach. The results show that the proposed framework provides ro-
bust estimates of the number of cells in a developing embryo up to the 5-cell stage, which is
48 hours post-fertilization. Whereas, Ref. [76] uses a fully convolutional regression network
to estimate cell density maps from images. The method includes auxiliary convolutional
neural networks to improve performance on unseen datasets.

Furthermore, Refs. [71,77] propose an automated method for blood cell counting
and categorization that employs instance segmentation, transfer learning, and Mask R-
CNN. The proposed approach successfully detects a wide range of blood cells, including
overlapped and faded cells. Similarly, Ref. [78] establishes a 3D cell counting method based
on U-net deep learning to effectively identify original seed cell numbers in extracellular
matrix (ECM) aggregated cells. When compared to standard contour and watershed
segmentation methods, the proposed method has a smaller counting error.

Finally, Ref. [79] presents a deep learning approach for the detection and segmentation
of macrophage cells in fluorescence microscopy images using feature pyramid fusion.
The proposed approach shows superior performance compared to a state-of-the-art Mask
R-CNN approach and provides a novel dataset of macrophage cells for public use. Likewise,
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Ref. [80] proposes a fully convolutional neural network-based approach for automatic cell
counting in fluorescent microscopy images. The proposed method shows human-level
performance and satisfactory performance in terms of the counting task, with mean and
median absolute errors of 0.8 and 1, respectively.

Despite all the preceding literature, the task of cell counting in fluorescence images
has yet to be studied utilizing a single-stage method for object detection. One such object
detection technology is You Only Look Once (YOLO), a cutting-edge deep learning-based
object identification framework. Because it uses a single convolutional neural network to
estimate bounding boxes and class probabilities directly from complete pictures, YOLO is
faster and more accurate than earlier object detection algorithms [40]. Numerous applica-
tions, including self-driving cars, pedestrian detection, and face detection, have effectively
exploited YOLO for object detection [81–83].

FPNs are another deep learning-based approach for image object detection, segmenta-
tion, and feature extraction. An FPN is a multiscale pyramid network that detects objects
of varying sizes in images by using feature maps of varying resolutions [84]. An FPN has
been used to recognize and segment small objects in aerial photos and to segment buildings
in satellite images [85–87].

3. Baseline Architecture

Figure 3 illustrates the baseline architecture of our model.

Figure 3. Architecture of our YOLOv5 model with FPN.

3.1. Overview of YOLOv5 Architecture

The architecture of YOLOv5 follows a similar concept to previous versions of YOLO,
where a single neural network is trained to directly predict bounding boxes and class
probabilities for each object in the image. However, YOLOv5 has undergone several
improvements to make it faster and more accurate. The network architecture of YOLOv5 is
based on a backbone of CSP convolutional layers and a neck of PAN layers, followed by
three different-sized detection heads. This architecture allows the model to capture features
at different scales, leading to improved accuracy in object detection tasks.
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3.2. Overview of FPN Architecture and Implementation

The basic idea behind an FPN is to construct a pyramid of multiscale feature maps
from a single input image. This pyramid is built by applying a series of convolutional
layers with decreasing spatial resolution to the input image. The resulting feature maps
at each level of the pyramid contain different levels of semantic information and different
levels of detail. The top-level feature map has the lowest spatial resolution but the highest
semantic information, while the bottom-level feature map has the highest spatial resolution
but the lowest semantic information.

3.3. Combining YOLOv5 and FPN

YOLOv5 with an FPN and YOLOv5 head architecture consists of three main parts:
backbone, neck, and head.

3.3.1. Backbone

The backbone is responsible for extracting feature maps from the input image. YOLOv5
uses a modified CSP backbone that is composed of a series of convolutional layers with
shortcut connections. The backbone consists of four stages, where each stage performs
downsampling of the feature maps. The stem is the initial part of the backbone that pro-
cesses the input image and generates the first set of feature maps. In YOLOv5, the stem
consists of a series of convolutional layers and a pooling layer that downsamples the image
to a smaller size. The stem is responsible for extracting low-level features such as edges
and corners from the input image. The stages are responsible for progressively extracting
more complex features from the input image by processing the feature maps generated by
the previous stage. Each stage typically performs downsampling of the feature maps to
increase their receptive field and reduce their spatial resolution. The stem and stages in
the YOLOv5 backbone are responsible for extracting increasingly complex features from
the input image, which are then used by the feature pyramid network (FPN) and YOLOv5
head to generate bounding box predictions and class probabilities.

3.3.2. Neck

The neck connects the backbone to the head and is responsible for fusing feature
maps of different resolutions. We use a feature pyramid network (FPN) as the neck, which
generates a pyramid of feature maps at different scales by combining feature maps from
different levels of the backbone. The FPN consists of two parts: a bottom-up pathway that
generates the feature maps from the backbone, and a top-down pathway that combines
the feature maps to create a pyramid of features. After the last stage of the backbone,
the feature map has a very small spatial resolution, which makes it difficult to detect small
objects. To address this, the FPN upsamples the feature maps from the lower scales and
fuses them with the feature maps from the higher scales to create a set of feature maps with
varying scales and resolutions. In the FPN, the upsampling operation is used to increase the
spatial resolution of the feature maps from the lower scales to match the resolution of the
feature maps from the higher scales. The upsampled feature maps are then merged with
the higher-scale feature maps using an additional operation to create a fused feature map.

The merged feature map is then passed through a convolution layer to refine the
features and reduce the channel depth to match the desired output size. The resulting
feature map is then used as the input to the next level of the pyramid.

The downsampling operation, which reduces the spatial resolution of the feature maps,
is typically implemented using pooling layers, such as max pooling or average pooling.
This operation is used in the backbone to reduce the spatial resolution of the input image
and generate the initial feature maps.

3.3.3. Head

The head is responsible for predicting the bounding boxes and class probabilities
for the objects in the input image. The YOLOv5 head architecture is a single-stage object
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detection system that predicts bounding boxes and class probabilities directly from the
fused feature maps generated by the FPN. The head consists of a series of convolutional
layers that reduce the dimensionality of the fused feature maps, followed by two fully
connected layers that output the bounding box coordinates and class probabilities.

4. Methodology
4.1. Dataset Preparation

The dataset utilized for cell counting in this study was obtained from the study
conducted by [70], consisting of 283 images of cultured cells from mice brain slices. As the
dataset was not initially suitable for object detection tasks using bounding boxes, we
preprocessed the data by annotating individual cells using the LabelImg tool in YOLOv5
pytorch format. This involved converting the bounding box coordinates to the format
(x, y, w, h), where (x, y) represents the center coordinates of the bounding box and (w, h)
represents the width and height of the bounding box relative to the image size. The class
label for each bounding box was also encoded as an integer. A thorough quality check was
conducted to ensure the accuracy and consistency of the annotations. Following annotation,
we randomly divided the dataset into training (80%), validation (10%), and testing (10%)
sets in order to train and evaluate our deep learning model for autonomous cell counting.

4.2. Dataset Augmentation

In order to increase the diversity of the dataset and prevent overfitting, data augmen-
tation techniques were applied to the original dataset of 283 images. The following data
augmentation techniques were used:

1. Horizontal flipping: The images were horizontally flipped to generate new images.
2. Rotation: The images were rotated at different angles to create variations in the cell

positions and orientations.
3. Brightness and contrast adjustment: The brightness and contrast of the images were

adjusted within a range of −40 to +40 to simulate different lighting conditions and
highlight the dim and dull cells.

The augmented dataset was generated by applying these techniques randomly to the
original dataset. The size of the augmented dataset was increased from 283 to 600 images.
The effectiveness of the data augmentation techniques was evaluated by training the
custom YOLOv5 model on both the original and augmented datasets and comparing
their performance.

4.3. Customizing YOLOv5

To customize YOLOv5 for cell counting, we needed to modify the architecture and
parameters of the model. The YOLOv5 architecture consists of a backbone network and
a detection head. The backbone network is responsible for feature extraction from the
input image, while the detection head is responsible for predicting the bounding boxes
and confidence scores for objects in the image. We customized both parts of the network
to improve its accuracy for cell counting. To configure YOLOv5 for cell counting, we also
modified the number of classes in the detection head to one, as we are only interested in
detecting one type of object, i.e., cells. We also modified the anchor box sizes and aspect
ratios to better match the size and shape of cells in our images. In addition, we modified
the output layer of the network to predict the number of cells in the image instead of
detecting their bounding boxes. Configuring the YOLOv5 architecture with FPN for cell
counting, the baseline architecture was modified to include the FPN module for multiscale
feature extraction. The number of feature levels and the feature map sizes for each level
were determined based on the input image size and the cell size. The algorithm for the
modification is presented in Algorithm 1.
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Algorithm 1 Customized YOLOv5 Model with FPN.

1: Load the pre-trained YOLOv5 model and remove the detection head.
2: Add the FPN layers to the model architecture by implementing the bottom-up and

top-down pathways.
3: Concatenate the feature maps generated by the bottom-up pathway with the corre-

sponding feature maps generated by the top-down pathway.
4: Apply convolutional layers to the concatenated feature maps to generate the final

multiscale feature maps.
5: Add the detection head back to the model architecture and train the model on the

annotated and augmented dataset.
6: Evaluate the performance of the customized YOLOv5 model with FPN.

5. Results

After fine-tuning the hyperparameters and experimenting with various optimization
algorithms, we settled on using the Adam optimizer with an initial learning rate of 0.001,
a weight decay of 0.0003, and a batch size of 80 for our customized YOLOv5 model with
an FPN. We trained the model on images of different sizes, namely 415 × 415, 640 × 640,
and 840 × 840, to generate multiscale feature maps that can detect cells of varying sizes.
Figures 4–8 illustrate the results obtained from the evaluation of the model on the validation
and test datasets. In the validation dataset, the precision was 0.796, recall was 0.741, and mAP
was 0.79. In the test dataset, the precision was 0.79, recall was 0.829, and mean average
precision was 0.837. The experiments in this study were conducted on a Google Colab
platform, utilizing a free GPU Tesla T4 for evaluating the performance of the proposed model.
On average, the processing time for each image, encompassing detection and counting, was
measured to be 43.9 ms. The confusion matrix in Figure 8 shows that the model correctly
predicted the “Cell” class 0.91 times.

Figure 4. F1 curve illustrating the model’s performance in terms of the F1 score at different confidence
thresholds. The F1 curve represents the harmonic mean of precision and recall, providing a balanced
measure of the model’s accuracy. Higher values on the curve indicate better overall performance.
At a confidence threshold of 38.7%, the model achieves an F1 score of 79%, indicating a good balance
between precision and recall.
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Figure 5. Precision curve illustrating the model’s performance in terms of precision at different
confidence thresholds. The precision curve represents the precision values obtained by the model at
various confidence levels. Higher values on the curve indicate better precision performance. At a
confidence threshold of 60.9%, the model achieves a precision of 100%, indicating perfect accuracy in
its positive predictions.

Figure 6. Recall curve illustrating the model’s performance in terms of recall at different confidence
thresholds. The recall curve measures the ability of the model to correctly identify positive instances
(cells) at varying confidence levels. Higher values on the curve indicate better recall performance.
The model achieves a recall of 94%, reflecting its high accuracy in identifying positive instances.
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Figure 7. Precision–recall curve illustrating the performance of the proposed model in cell detection.
The curve showcases the trade-off between precision and recall, with higher values indicating better
performance. At the classification threshold of 0.5, the model achieves a precision of 83.7% and a
corresponding recall value.

The F1 curve illustrates the trade-off between precision and recall for different con-
fidence thresholds. The highest F1 score achieved was 80%, indicating a good balance
between precision and recall. The training and validation accuracy and loss curves show
the progress of the model’s performance during training. The validation accuracy steadily
increased over time, while the training loss steadily decreased, indicating that the model
was effectively learning from the data. The precision and confidence curves show the rela-
tionship between precision and confidence for different confidence thresholds. The highest
precision was achieved at a confidence threshold of 0.7, indicating that the model was
highly confident in its predictions at this threshold.

Furthermore, we retrained the model using the initial weights and conducted training
for 300 epochs, implementing the early stopping technique. Early stopping involves
monitoring the validation loss, and if there is no improvement in the validation loss
over a consecutive number of epochs, training is halted. This approach ensures that the
model achieves the best performance while preventing overfitting. We also compared
the performance of our model with and without data augmentation, and with different
image sizes and YOLOv5 architectures (Yolos, Yolon, Yolol, and Yolofpn). Our experiments
demonstrated that YOLOv5 with an FPN achieves the best performance with an mAP of
0.799. The comparison table of the results obtained from the different experiments provides
a comprehensive view of the performance achieved by our model. Table 2 shows that the
model trained with data augmentation achieved higher precision, recall, and F1 scores
compared to the model trained without data augmentation. It also shows that the best
results were achieved with the YOLOv5 architecture and an image size of 416 × 416, which
achieved the highest mAP on the validation set and test set also.
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Figure 8. Confusion matrix evaluating the proposed model’s performance. Rows represent actual
classes, and columns represent predicted classes. Values in the matrix indicate the number of instances
per class. Higher diagonal values indicate accurate predictions, while off-diagonal elements represent
misclassifications. Notably, the model achieved a 91% correct detection rate for cell detection.

Table 2. Comparison of performance metrics (precision, recall, mAP) for YOLOv5s, YOLOv5n,
and YOLOv5fpn on different input image sizes (416 × 416, 640 × 640, and 840 × 840).

416 × 416 640 × 640 840 × 840

Precision Recall mAP Precision Recall mAP Precision Recall mAP

YOLOv5s 0.741 0.701 0.732 0.787 0.744 0.764 0.756 0.723 0.741

YOLOv5n 0.738 0.661 0.681 0.779 0.695 0.73 0.759 0.734 0.749

YOLOv5fpn 0.796 0.741 0.799 0.758 0.740 0.748 0.748 0.708 0.732

In the final stage of our evaluation, we quantified the number of cells detected in the test
dataset. A few exemplary images from the test dataset are shown in Figures 9–12, along with
their corresponding detected cells. The numbers with every box along with the word “cell”
represent the confidence scores associated with each cell detection. The term “confidence
score” in object detection refers to a numerical number that expresses the algorithm’s opinion
regarding the likelihood that a detected region or bounding box contains a certain object
of interest, in this case “cell”. This analysis allowed us to assess the effectiveness of our
customized YOLOv5 model with an FPN in detecting cells accurately and reliably, and to
further confirm its potential for use in practical applications.
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Figure 9. Detected and Counted Cells in Sample Images from Test Dataset = 3.

Figure 10. Detected and Counted Cells in Sample Images from Test Dataset = 44.
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Figure 11. Detected and Counted Cells in Sample Images from Test Dataset = 4.

Figure 12. Detected and Counted Cells in Sample Images from Test Dataset = 9.

6. Discussion

Our paper presents a machine learning approach for automated cell counting in fluo-
rescent microscopy images using YOLOv5fpn. In comparison to the approach proposed
in the UNet paper [80], which achieves an F1 score of 0.87, our method achieves a true
positive cell prediction rate of 0.94, demonstrating high precision and accuracy. Our method
employs a single-shot detection approach, which eliminates the need for a separate seg-
mentation step and makes the model faster and more efficient. Furthermore, we conducted
several experiments to optimize our model’s performance, including retraining the model
with early stopping and comparing the performance with and without data augmentation,
and with different image sizes and YOLOv5 architectures. Our method employs a single-
shot detection approach, which eliminates the need for a separate segmentation step and
makes the model faster and more efficient. By directly detecting cells in a single pass, our
approach significantly reduces the computational complexity and processing time, making
it suitable for large-scale analyses and real-time applications.



Diagnostics 2023, 13, 2280 15 of 19

Another notable advantage of our approach is its ability to handle cells of varying sizes.
Evident from Figures 9–12, the cells in the images exhibit size variations and our method
successfully detects and counts them. This capability is crucial in biomedical research, as it
enables the analysis of cellular populations with diverse sizes and facilitates the study of
cellular dynamics and disease progression. Moreover, our method can extract the bounding
box coordinates for each detected cell. These coordinates provide the spatial location of the
cells within the image, enabling further spatial analysis and characterization. Researchers
can use these coordinates to study the distribution and clustering patterns of cells in
the image, which can provide valuable insights into cellular dynamics and interactions.
Additionally, by measuring the width and height of the bounding box, researchers can
obtain an approximation of the size of each cell. This information can be used to analyze
cell size distribution, track changes in cell size over time, or compare the sizes of cells under
different experimental conditions.

As a whole, our suggested method detects and counts cells accurately while also provid-
ing valuable parameters, such as bounding box coordinates, confidence ratings, and projected
cell sizes. These parameters enable the comprehensive analysis and characterization of cellu-
lar features, facilitating further investigations into cellular dynamics, disease progression,
and the effects of various treatments or interventions. In summary, our single-shot detection
method shows promise for automated cell counting in fluorescence microscopy pictures,
offering a quick and accurate solution that might be employed in a range of research and
clinical situations.

7. Conclusions

In conclusion, our study presents a promising solution for automated cell counting in
fluorescence microscopy images using the YOLOv5fpn model. Our experiments demon-
strate the effectiveness of the single-shot detection approach, which eliminates the need for
a separate segmentation step, making the model faster and more efficient. We also show
that the model’s performance can be further optimized by retraining with early stopping
and utilizing data augmentation, achieving good results.

However, our study also has limitations that can be addressed in future work. One
limitation is the size and variety of the dataset used for training and validation. While our
dataset includes a large number of images, it is limited to a specific type of cell, and future
studies could benefit from incorporating additional cell types and imaging conditions. Ad-
ditionally, our study focuses on detecting and counting cells in 2D images, and future work
could explore extending this approach to 3D images or time-lapse microscopy. Overall, our
study provides a foundation for further research in the automated analysis of fluorescence
microscopy images, with potential applications in various research and clinical settings.
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2D Two Dimensional
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CNN Convolution Neural Network
CSP Cross-Stage Partial
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SSD Single-Shot Detector
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