

Use of AI-Based Drones in Smart Cities ⊗

Imdad Ali Shah (/affiliate/imdad-ali-shah/436254/), Noor Zaman Jhanjhi (/affiliate/noor-zaman-jhanjhi/436256/), Sarfraz Nawaz Brohi (/affiliate/sarfraz-nawaz-brohi/463061/)

Source Title: Cybersecurity Issues and Challenges in the Drone Industry (/gateway/book/324607) Copyright: © 2024 Pages: 19 ISBN13: 9798369307748ISBN13 Softcover: 9798369345627EISBN13: 9798369307755 DOI: 10.4018/979-8-3693-0774-8.ch015 Cite Chapter ✔ Favorite ★

View Full Text HTML >

View Full Text PDF >

(/gateway/chapter/full-texthtml/340084)

(/gateway/chapter/full-textpdf/340084)

Abstract

Autonomous drones, known as AI drones, have been working without human intervention. It is doing something like navigation, avoiding obstacles, and taking picture recognition without explicit human direction, thanks to AI technology. It's an advantage of AIbased drones that they are capable of flying without human intervention. This can be used for missions such as monitoring searches and rescue operations in remote areas where human lives are at risk. Because of their sophisticated cameras and detectors, AIbased drones are able to collect and analyze large amounts of data in real-time. With this data, comprehensive maps may be made, locations of interest can be found, and the situational awareness of human operators can be improved. These days, the concept of a "smart city" intrigues everyone. Advanced technologies such as AI, blockchain, the IoT, drones, and many more are integrated.

Request access from your librarian to read this chapter's full text.

Full Text Preview

•

1. Introduction

Smart city integration of Al-based drones has many advantages, including improved infrastructure monitoring, emergency response. and surveillance. However, using these drones also raises several security issues requiring careful attention. Artificial intelligence is one of the most rapidly developing and commonly used technologies in the modern era. Al uses simulations of human brain activity to address practical issues. Robots, smart cars, prediction, e-commerce, navigation, human resources, and healthcare are a few examples of applications for AI farming, video games, cars, social networking, and marketing. Security is a crucial concern (Alsamhi, S., 2018). Issues affecting individuals, groups, or societies are handled with synthetic intelligence. Al security is using artificial intelligence in tools and procedures (Alsamhi, S.; Rajput, N., 2016). They use AI to recognize and react to potential cyber threats based on similarities. Al and machine learning can assist in keeping up with cyber criminals, automating threat detection, and responding more efficiently than traditional software-driven or manual techniques in the face of cyberattacks and the exponential growth of devices today (Alsamhi, S.H., 2018; Al-Hourani, A., 2017). This is an intriguing area where Al can compete. The usage of Al extends beyond the previously mentioned application areas. One of the technologies that works best for managing smart cities is AI. Numerous publications in the same field have highlighted the importance of AI for smart cities. AI applications for smart cities include identity management, smart traffic, smart grid, precision farming, and smart healthcare. Appropriately and successfully using AI-based drones in smart cities depends on addressing these security issues (Alzenad, M., 2020). A comprehensive approach combining technology, legislation, and public awareness is required to ensure that the advantages of drone technology are achieved while reducing associated risks. An overview of the public safety network is in Figure 1.

(https://igiprodst.blob.core.windows.net:443/source-content/9798369307748_324607/979-8-3693-0774-8.ch015.f01.png?sv=2015-12-11&sr=c&sig=z0%2BGq4sMXffd26jTAzfwCAdwMwupHKmI3dVAPTj53qs%3D&se=2024-10-28T16%3A28%3A59Z&sp=r) Wearable technology cannot transmit data long distances due to its low transmission power. However, drone technology can provide real time services over a vast deographic area (B_Bera et al., 2020). Drone technology is the most affordable and effective means to References over a vast geographic area (B. Bera et al., 2020). Drone technology is the most anormable and encouver means to

The chapter will focus on the following prints ndrasekharan S. Kandeepan S. Jamalipour A. (2017). Aerial platforms for public

Follow Befrance focused by distribute and performance optimization. In Wireless Public Safety Networks 3 (pp. 133-15)

- 2. This chapter focusEdsonidronloslahdosDa78citie38548-053-9.50007-X
- 3. This chapter focused on the Security Concerns of using drones in smart cities.
- This chapter discussed in 2000 y Sustantia Ur Works Novel Authentication Scheme for UAVGround Station and UAV-UAV
 This chapter provides interaction of the Company of the Compa

•

Alsamhi, S., Ma, O., & Ansari, M. (2018). *Artificial Intelligence-Based Techniques for Emerging* **2. Literature Reviews** *Communication: A Survey and Future Perspectives*. arXiv:1804.09671

Al-powered drones are becoming a bigger and bigger component of smart city ecosystems. They offer the capacity to gather data in real time, keep an eye on him attractive, and respond white the mean and respondent of smart city ecosystems. They offer the capacity to gather data in perform tasks independently, white makes the mean feature with the end of the end

Alsamhi. (2019). Survey on Collaborative Smart Drones and Internet of Things for Improving SmartnewoodismarReading k/geteway/chapter/full-text-html/340084)

Follow Reference	Alsamhi S. H. Ansari M. S. Ma O. Almalki F. Gupta S. K. (2018). Tethered Balloon Technology in Design Solutions for Rescue and Relief Team Emergency Communication Services. Disaster Medicine and Public Health Preparedness, 1–8.29789025
Follow Reference	Alsamhi S. H. Ansari M. S. Rajput N. S. (2017). Disaster coverage prediction for the emerging tethered balloon technology: Capability for preparedness, detection, mitigation, and response.Disaster Medicine and Public Health Preparedness, 12(2), 222–231. 10.1017/dmp.2017.5428789726
Follow Reference	Alzenad M. El-Keyi A. Yanikomeroglu H. (2018). 3D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements.IEEE Wireless Communications Letters, 7(1), 38–41. 10.1109/LWC.2017.2752161
	Balakrishnan, S., Ruskhan, B., Zhen, L. W., Huang, T. S., Soong, W. T. Y., & Shah, I. A. (2023). Down2Park: Finding New Ways to Park. <i>Journal of Survey in Fisheries Sciences</i> , 322-338.
Follow Reference	Bera B. Chattaraj D. Das A. K. (2020). Designing Secure Blockchain-Based Access Control Scheme in IoT-Enabled Internet of Drones Deployment. Computer Communications, 153, 229–249. 10.1016/j.comcom.2020.02.011
Follow Reference	Bera B. Saha S. Das A. K. Kumar N. Lorenz P. Alazab M. (2020). Blockchain-Envisioned Secure Data Delivery and Collection Scheme for 5G-Based IoT-Enabled Internet of Drones Environment. IEEE Transactions on Vehicular Technology, 69(8), 9097–9111. 10.1109/TVT.2020.3000576
	Bilal, M., Usmani, R. S. A., Tayyab, M., Mahmoud, A. A., Abdalla, R. M., Marjani, M., Pillai, T. R., & Targio Hashem, I. A. (2020). Smart cities data: Framework, applications, and challenges. <i>Handbook of smart cities</i> , 1-29.

	Brokaw, A. (2016). Autonomous search-and-rescue drones outperform humans at navigating forest trails. <i>Verge, 11</i> . Available online: https://www.theverge.com/2016/2/11/10965414/autonomous-drones-deep-learning-navigation-mapping (https://www.theverge.com/2016/2/11/10965414/autonomous-drones-deep-learning-navigation-mapping)
Follow Reference	Chen X. Guo D. (2016). Public Safety Broadband Network with Rapid-deployment Base Stations. In Wireless Public Safety Networks 2 (pp. 173–198). Elsevier. 10.1016/B978-1-78548-052-2.50006-2
	Chou, SF., Yu, YJ., Pang, AC., & Lin, TA. (2018). Energy-Aware 3D Aerial Small-Cell Deployment over Next Generation Cellular Networks. <i>Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring)</i> , 1–5.
	Dauphin L. Adjih C. Petersen H. Baccelli E. (2017). Low-Cost Robots in the Internet of Things: Hardware, Software & Communication Aspects.Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks, 284–289.
	Dawson, M., & Walker, D. (2022). Argument for Improved Security in Local Governments Within the Economic Community of West African States. <i>Cybersecurity Measures for E-Government Frameworks</i> , 96-106.
Follow Reference	Dhillon H. S. Huang H. Viswanathan H. (2017). Wide-area wireless communication challenges for the Internet of Things.IEEE Communications Magazine, 55(2), 168–174. 10.1109/MCOM.2017.1500269CM
Follow Reference	Favraud R. Apostolaras A. Nikaein N. Korakis T. (2016). Public Safety Networks: Enabling Mobility for Critical Communications. In Wireless Public Safety Networks 2 (pp. 95–126). Elsevier. 10.1016/B978-1-78548-052-2.50004-9
Follow Reference	Fraga-Lamas P. Fernández-Caramés T. M. Suárez-Albela M. Castedo L. González-López M. (2016). A review on internet of things for defence and public safety.Sensors (Basel), 16(10), 1644. 10.3390/s1610164427782052
	Gautam B. P. Wasaki K. Sharma N. (2016). A novel approach of fault management and restoration of network services in IoT cluster to ensure disaster readiness.Proceedings of the 2016 International Conference on Networking and Network Applications (NaNA),423–428.
Follow Reference	Guillen-Perez A. Cano MD. (2018). Flying Ad Hoc Networks: A New Domain for Network Communications.Sensors (Basel), 18(10), 3571. 10.3390/s1810357130347892
Follow Reference	Hasan H. AlHadhrami E. AlDhaheri A. Salah K. Jayaraman R. (2019). Smart Contract-Based Approach for Efficient Shipment Management. Computers & Industrial Engineering, 136, 149–159. 10.1016/j.cie.2019.07.022
Follow Reference	Hassija V. Chamola V. Krishna D. N. G. Guizani M. (2020). A Distributed Framework for Energy Trading Between UAVs and Charging Stations for Critical Applications. IEEE Transactions on Vehicular Technology, 69(5), 5391–5402. 10.1109/TVT.2020.2977036
Follow Reference	He X. Yu W. Xu H. Lin J. Yang X. Lu C. Fu X. (2018). Towards 3D Deployment of UAV Base Stations in Uneven Terrain.Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN),1–9. 10.1109/ICCCN.2018.8487319

Follow Reference	Hossein Motlagh N. Taleb T. Arouk O. (2016). Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE Internet of Things Journal, 3(6), 899–922. 10.1109/JIOT.2016.2612119
Follow Reference	Hu B. Wang C. A. Chen S. Wang L. Yang H. (2018). Proactive Coverage Area Decisions Based on Data Field for Drone Base Station Deployment.Sensors (Basel), 18(11), 3917. 10.3390/s1811391730428635
Follow Reference	Hussain M. Talpur M. S. H. Humayun M. (2022). The Consequences of Integrity Attacks on E-Governance: Privacy and Security Violation. In Cybersecurity Measures for E-Government Frameworks (pp. 141–156). IGI Global. 10.4018/978-1-7998-9624-1.ch009
Follow Reference	Jhanjhi N. Z. Ahmad M. Khan M. A. Hussain M. (2022). The impact of cyber attacks on e-governance during the covid-19 pandemic. In Cybersecurity Measures for E-Government Frameworks (pp. 123–140). IGI Global. 10.4018/978-1-7998-9624-1.ch008
Follow Reference	Kiran S. R. A. Rajper S. Shaikh R. A. Shah I. A. Danwar S. H. (2021). Categorization of CVE Based on Vulnerability Software By Using Machine Learning Techniques.International Journal (Toronto, Ont.), 10(3).
Follow Reference	Kolios P. Pitsillides A. Mokryn O. Papdaki K. (2016). 7—Data Dissemination in Public Safety Networks. In CâmaraD.NikaeinN. (Eds.), Wireless Public Safety Networks 2 (pp. 199–225). Elsevier. 10.1016/B978-1-78548-052-2.50007-4
Follow Reference	Lee E. Seo YD. Oh SR. Kim YG. (2021). A Survey on Standards for Interoperability and Security in the Internet of Things. IEEE Communications Surveys and Tutorials, 23(2), 1020–1047. 10.1109/COMST.2021.3067354
	Long, T., Ozger, M., Cetinkaya, O., & Akan, O. B. Energy neutral internet of drones. <i>IEEE Commun. Mag.</i> , 56, 22–28.
Follow Reference	Mehmood Y. Ahmad F. Yaqoob I. Adnane A. Imran M. Guizani S. (2017). Internet-of-things-based smart cities: Recent advances and challenges.IEEE Communications Magazine, 55(9), 16–24. 10.1109/MCOM.2017.1600514
Follow Reference	Mohamed N. Al-Jaroodi J. Jawhar I. Idries A. Mohammed F. (2018). (in press). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change.
	Mozaffari, M., Kasgari, A. T. Z., Saad, W., Bennis, M., & Debbah, M. (2018). Beyond 5G with UAVs: Foundations of a 3D Wireless Cellular Network. arXiv:1805.06532
Follow Reference	Mozaffari M. Saad W. Bennis M. Debbah M. (2016). Unmanned aerial vehicle with underlaid device- to-device communications: Performance and tradeoffs.IEEE Transactions on Wireless Communications, 15(6), 3949–3963. 10.1109/TWC.2016.2531652
	Mozaffari, M., Saad, W., Bennis, M., Nam, YH., & Debbah, M. (2018). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. arXiv:1803.00680
Follow Reference	Msadaa I. C. Dhraief A. (2016). Internet of Things in Support of Public Safety Networks: Opportunities and Challenges. In Wireless Public Safety Networks 2 (pp. 1–23). Elsevier. 10.1016/B978-1-78548-052-2.50001-3

Follow Reference	Muzafar S. Humayun M. Hussain S. J. (2022). Emerging Cybersecurity Threats in the Eye of E-Governance in the Current Era. In Cybersecurity Measures for E-Government Frameworks (pp. 43–60). IGI Global. 10.4018/978-1-7998-9624-1.ch003
Follow Reference	Naqvi S. A. R. Hassan S. A. Pervaiz H. Ni Q. (2018). Drone-aided communication as a key enable. 5G and resilient public safety networks.IEEE Communications Magazine, 56(1), 36–42. 10.1109/MCOM.2017.1700451
Follow Reference	Pahl C. El Ioini N. Helmer S. Lee B. (2018). An architecture pattern for trusted orchestration in IoT edge clouds.Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC),63–70. 10.1109/FMEC.2018.8364046
Follow Reference	Ray P. P. Mukherjee M. Shu L. (2017). Internet of things for disaster management: State-of-the-art and prospects.IEEE Access : Practical Innovations, Open Solutions, 5, 18818–18835. 10.1109/ACCESS.2017.2752174
Follow Reference	Reina D. Camp T. Munjal A. Toral S. Tawfik H. (2018). Evolutionary Deployment and Hill Climbing- Based Movements of Multi-UAV Networks in Disaster Scenarios. In Applications of Big Data Analytics (pp. 63–95). Springer. 10.1007/978-3-319-76472-6_4
Follow Reference	Reina D. G. Camp T. Munjal A. Toral S. L. (2018). Evolutionary deployment and local search-based movements of 0th responders in disaster scenarios. Future Generation Computer Systems, 88, 61–78. 10.1016/j.future.2018.05.024
	Roy Chowdhury, A. (2017). IoT and Robotics: A synergy. PeerJ Prepr., 5, e2760v1.
Follow Reference	Sánchez-García J. García-Campos J. Arzamendia M. Reina D. Toral S. Gregor D. (2018). A survey on unmanned aerial and aquatic vehicle multi-hop networks: Wireless communications, evaluation tools and applications.Computer Communications, 119, 43–65. 10.1016/j.comcom.2018.02.002
Follow Reference	Shah I. A. Jhanjhi N. Z. Amsaad F. Razaque A. (2022). The Role of Cutting-Edge Technologies in Industry 4.0. In Cyber Security Applications for Industry 4.0 (pp. 97–109). Chapman and Hall/CRC. 10.1201/9781003203087-4
Follow Reference	Shah I. A. Jhanjhi N. Z. Laraib A. (2023). Cybersecurity and Blockchain Usage in Contemporary Business. In Handbook of Research on Cybersecurity Issues and Challenges for Business and FinTech Applications (pp. 49–64). IGI Global.
	Shah, I. A., Sial, Q., Jhanjhi, N. Z., & Gaur, L. (2023). Use Cases for Digital Twin. In <i>Digital Twins</i> and Healthcare: Trends, Techniques, and Challenges (pp. 102-118). IGI Global.
	Shah, I. A., Sial, Q., Jhanjhi, N. Z., & Gaur, L. (2023). The Role of the IoT and Digital Twin in the Healthcare Digitalization Process: IoT and Digital Twin in the Healthcare Digitalization Process. In <i>Digital Twins and Healthcare: Trends, Techniques, and Challenges</i> (pp. 20-34). IGI Global.
	Shah, I. A., Wassan, S., & Usmani, M. H. (2022). E-Government Security and Privacy Issues: Challenges and Preventive Approaches. In <i>Cybersecurity Measures for E-Government Frameworks</i> (pp. 61-76). IGI Global.
Follow Reference	Sharma V. (2018). An Energy-Efficient Transaction Model for the Blockchain-enabled Internet of Vehicles (IoV).IEEE Communications Letters.

Follow Reference	Sharma V. Kumar R. (2017). Cooperative frameworks and network models for flying ad hoc networks: A survey.Concurrency and Computation, 29(4), e3931. 10.1002/cpe.3931
Follow Reference	Shi W. Li J. Xu W. Zhou H. Zhang N. Zhang S. Shen X. (2018). Multiple Drone-Cell Deployment Analyses and Optimization in Drone Assisted Radio Access Networks.IEEE Access : Practical Innovations, Open Solutions, 6, 12518–12529. 10.1109/ACCESS.2018.2803788
	statista.com . (n.d.). https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
Follow Reference	Tomasino A. P. Fedorowicz J. Williams C. B. (2017). Public Sector Shared Services Move Out of the" Back-Office" The Role of Public Policy and Mission Criticality. The Data Base for Advances in Information Systems, 48(3), 83–109. 10.1145/3130515.3130521
Follow Reference	Ujjan R. M. A. Hussain K. Brohi S. N. (2022). The impact of Blockchain technology on advanced security measures for E-Government. In Cybersecurity Measures for E-Government Frameworks (pp. 157–174). IGI Global. 10.4018/978-1-7998-9624-1.ch010
Follow Reference	Ujjan R. M. A. Khan N. A. Gaur L. (2022). E-Government Privacy and Security Challenges in the Context of Internet of Things. In Cybersecurity Measures for E-Government Frameworks (pp. 22–42). IGI Global. 10.4018/978-1-7998-9624-1.ch002
Follow Reference	Ujjan, R. M. A., Pervez, Z., & Dahal, K. (2018, June). Suspicious traffic detection in SDN with collaborative techniques of snort and deep neural networks. In 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 915-920). IEEE. 10.1109/HPCC/SmartCity/DSS.2018.00152
Follow Reference	Ujjan R. M. A. Pervez Z. Dahal K. Bashir A. K. Mumtaz R. González J. (2020). Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN.Future Generation Computer Systems, 111, 763–779. 10.1016/j.future.2019.10.015
Follow Reference	Ujjan R. M. A. Taj I. Brohi S. N. (2022). E-Government Cybersecurity Modeling in the Context of Software-Defined Networks. In Cybersecurity Measures for E-Government Frameworks (pp. 1–21). IGI Global. 10.4018/978-1-7998-9624-1.ch001
Follow Reference	Umrani S. Rajper S. Talpur S. H. Shah I. A. Shujrah A. (2020). Games based learning: A case of learning Physics using Angry Birds.Indian Journal of Science and Technology, 13(36), 3778–3784. 10.17485/IJST/v13i36.853
Follow Reference	Vattapparamban E. Güvenç İ. Yurekli A. İ. Akkaya K. Uluağaç S. (2016). Drones for smart cities: Issues in cybersecurity, privacy, and public safety.Proceedings of the 2016 International Wireless Communications and Mobile computing Conference (IWCMC),216–221. 10.1109/IWCMC.2016.7577060
	Wang, Q., Lee, B., Murray, N., & Qiao, Y. (2018). MR-IoT: An information centric MapReduce framework for IoT. <i>Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC)</i> , 1–6.
Follow Reference	Wang S. (2020). Secure Crowdsensing in 5G Internet of Vehicles: When Deep Reinforcement Learning Meets Blockchain. IEEE Consumer Electronics Magazine. Advance online publication. 10.1109/MCE.2020.3048238

•

Request Access

You do not own this content. Please login to recommend this title to your institution's librarian or purchase it from the IGI Global bookstore (/chapter/use-of-ai-based-drones-in-smart-cities/340084).

Username or email:

Soobiasaeed1@gmail.com

Password:

•••••

Log In >

Forgot individual login password? (/gateway/login/reset-password/)

Create individual account (/gateway/login/create-account/)

Research Tools

Database Search (/gateway/) | Help (/gateway/help/) | User Guide (/gateway/user-guide/) | Advisory Board (/gateway/advisory-board/)

•

User Resources

Librarians (/gateway/librarians/) | Researchers (/gateway/researchers/) | Authors (/gateway/authors/)

Librarian Tools

COUNTER Reports (/gateway/librarian-tools/counter-reports/) | Persistent URLs (/gateway/librarian-tools/persistent-urls/) | MARC Records (/gateway/librarian-tools/marc-records/) | Institution Holdings (/gateway/librarian-tools/institution-holdings/) | Institution Settings (/gateway/librarian-tools/institution-settings/)

Librarian Resources

Training (/gateway/librarian-corner/training/) | Title Lists (/gateway/librarian-corner/title-lists/) | Licensing and Consortium Information (/gateway/librarian-corner/licensing-and-consortium-information/) | Promotions (/gateway/librarian-corner/promotions/)

Policies

Terms and Conditions (/gateway/terms-and-conditions/)

(http://www.facebook.com/pages/IGI-

Global/138206739534176?ref=sgm)

(http://twitter.com/igiglobal) (https://www.linkedin.com/company/igiglobal)

(http://www.world-forgottenchildren.org)

(https://publicationethics.org/category/publisher/igiglobal)

Copyright © 1988-2024, IGI Global - All Rights Reserved