

The Need for Explainable AI in Industry 5.0 ⊗

Azeem Khan, Noor Zaman Jhanjhi (/affiliate/noor-zaman-jhanjhi/415447/), Dayang Hajah Tiawa Binti Awang Haji Hamid, Haji Abdul Hafidz bin Haji Omar

Source Title: Advances in Explainable AI Applications for Smart Cities (/gateway/book/301208) Copyright: © 2024

Pages: 30

ISBN13: 9781668463611ISBN10: 166846361XISBN13 Softcover: 9781668463628EISBN13: 9781668463635

DOI: 10.4018/978-1-6684-6361-1.ch001

Cite Chapter ❤ Favorite ★

View Full Text HTML >

View Full Text PDF >

(/gateway/chapter/full-texthtml/336870)

(/gateway/chapter/full-textpdf/336870)

Abstract

As we enter the era of Industrial Revolution 5.0 (IR 5.0), the role of artificial intelligence (AI) in various domains such as manufacturing, military, healthcare, education, and entertainment is becoming increasingly vital. However, the growing complexity and opacity of AI systems have led to a problem known as the "black box," which hinders trust and accountability. This is where explainable AI (XAI) comes in, providing a set of processes and methods that enable human users to understand and trust the results and output produced by machine learning algorithms. By describing AI models, their expected impact, and potential biases, XAI helps ensure accuracy, fairness, transparency, and accountability in AI-powered decision making. In this chapter, the authors argue that XAI is indispensable for IR 5.0, as it enables humans to collaborate with AI systems effectively and responsibly. The authors reviewed the current state of XAI research and practice and highlighted the challenges and opportunities for XAI in IR 5.0.

Request access from your librarian to read this chapter's full text.

Full Text Preview

I. Introduction

As narrated in Table 1.0, The fourth industrial revolution(A. Khan, Jhanjhi, & Sujatha, 2022; Shah, Jhanjhi, Amsaad, & Razaque) has brought about automation(Khandelwal et al., 2023), robotization, big data analytics, smart systems(A. Khan, Jhanjhi, & Humayun, 2020; A. Khan, Jhanjhi, & Humayun, 2022), virtualization, AI, machine learning and Internet of Things, enabling new levels of efficiency, productivity, and innovation across various domains. However, these technologies have also created new challenges and risks, such as the complexity and opacity of AI systems, the ethical and legal implications of AI-powered decision making, and the impact on trust and accountability in human-machine collaboration. Therefore, there is a need to prepare for the fifth industrial revolution (IR 5.0), which aims to balance the economic benefits of technology with the social and environmental goals of humanity, reinforcing the role and contribution of industry to society by addressing global challenges.

A key enabler for IR 5.0 is explainable AI (XAI)(Mankodiya, Obaidat, Gupta, & Tanwar, 2021; Woźnica & Biecek, 2021), which allows human users to comprehend and trust the results and output created by machine learning algorithms. XAI characterizes model accuracy, fairness, transparency, and outcomes in AI-powered decision making, and can help humans collaborate with AI systems effectively and responsibly by enhancing their understanding, confidence, and control over the technology(M. M. Khan & Vice, 2022; Vice & Khan, 2022). This chapter explores the concept of Industry 5.0 and its implications for industry and society, reviews the current state of XAI research and practice, highlights the challenges(Humayun, Niazi, et al., 2022) and opportunities for XAI in IR 5.0, provides an overview of techniques for developing explainable AI systems, suggests best practices for implementing XAI in industry, and discusses the future of explainable AI in IR 5.0 and the importance of balancing innovation with accountability.

Industrial Revolution (IR)	Timeframe	Principal Traits	Manifestations
1.0	1760-1840	The shift from manual labor to mechanized production powered by water and steam marked a significant change in industrial development, giving rise to the textile, iron, and chemical industries. Additionally, urbanization, population growth, and expanded trade and transportation networks increased the demand for mechanized production.	Spinning jenny, power loom, steam engine, cotton gin, canal, railway.
2.0	1870-1914	Following the mechanized production era, mass production using electricity and internal combustion engines emerged. This was accompanied by the development of steel, petroleum, and electrical industries and the emergence of new forms of business organization and management.	Bessemer process, automobile, airplane, telephone, radio, assembly line, corporation, department store.
3.0	1945-1990	The transition from mass production to automated production saw the development of industries such as aerospace, nuclear, and biotechnology, which relied heavily on computers and electronics. The period also witnessed the emergence of globalization and an information society.	Computer, robot, satellite, internet, mobile phone, nuclear power plant, green revolution.
4.0	1990-present	The era of automated production gave way to smart production facilitated by cyber-physical systems and artificial intelligence. This marked the development of industries such as nanotechnology, renewable energy, and the Internet of Things. The period also saw the emergence of digital platforms and a network economy. However, it also presented challenges such as cybersecurity and data privacy.	Artificial intelligence, 3D printing, blockchain, cloud computing, smart grid, smart city, social media, e- commerce.
		Transition from smart production to human-centric production using collaboration and co-creation between humans and machines. Development of biomimicry, circular economy, and	Cobotics, quantum computing, wireless power transmission, fusion power plant craft

Table 1. Narratives of industrial revolutions

•

References	prain-computer interrace industries. Emergence or social industry social industry innovation and wellbeing society. Opportunity for sustainability creative industry green
5.0	Future and resilience. Adadi A. Berrada M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial
Follow Reference	Intelligence (XAI).IEEE Access : Practical Innovations, Open Solutions, 6, 52138–52160.
	10.1109/ACCESS.2018.2870052 Continue Reading (/gateway/chapter/full-text-html/336870)
	Continue Reading (/gateway/chapter/full-text-html/336870) Aherwadi N. Mittal U. Singla J. Jhanjhi N. Yassine A. Hossain M. S. (2022). Prediction of Fruit
Follow Reference	Maturity, Quality, and Its Life Using Deep Learning Algorithms.Electronics (Basel), 11(24), 4100. 10.3390/electronics11244100
	Ahmad H. Dharmadasa I. Ullah F. Babar M. A. (2023). A Review on C3I Systems' Security:
Follow Reference	Vulnerabilities, Attacks, and Countermeasures. ACM Computing Surveys, 55(9), 1–38. Advance online
	publication. 10.1145/3558001
	Ahmad, K., Maabreh, M., Ghaly, M., Khan, K., Qadir, J., & Al-Fuqaha, A. (2020). Developing future
	human-centered smart cities: Critical analysis of smart city security, interpretability, and ethical challenges.arXiv preprint arXiv:2012.09110.
Follow Reference	Ahn S. Kim J. Park S. Y. Cho S. (2020). Explaining Deep Learning-based Traffic Classification using A Genetic Algorithm. IEEE. 10.1109/ACCESS.2020.3048348
Follow Reference	Aldughayfiq, B., Ashfaq, F., Jhanjhi, N., & Humayun, M. (2023). <i>YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification</i> . Paper presented at the Healthcare.
	10.3390/healthcare11091222
Follow Reference	Alves J. Lima T. M. Gaspar P. D. (2023). Is Industry 5.0 a Human-Centred Approach? A Systematic
	Review.Processes (Basel, Switzerland), 11(1), 193. 10.3390/pr11010193
	Alzahrani L. (2021). Statistical Analysis of Cybersecurity Awareness Issues in Higher Education
Follow Reference	Institutes.International Journal of Advanced Computer Science and Applications, 12(11), 630–637. 10.14569/IJACSA.2021.0121172
	Annadurai C. Nelson I. Devi K. N. Manikandan R. Jhanjhi N. Masud M. Sheikh A. (2022). Biometric
Follow Reference	Authentication-Based Intrusion Detection Using Artificial Intelligence Internet of Things in Smart
	City.Energies, 15(19), 7430. 10.3390/en15197430
	Bellagarda J. S. Abu-Mahfouz A. M. (2022). An Updated Survey on the Convergence of Distributed
Follow Reference	Ledger Technology and Artificial Intelligence: Current State, Major Challenges and Future Direction.IEEE Access : Practical Innovations, Open Solutions, 10, 50774–50793.
	10.1109/ACCESS.2022.3173297
	Caruana, R., Lundberg, S., Ribeiro, M. T., Nori, H., & Jenkins, S. (2020). Intelligible and explainable
Follow Reference	machine learning: Best practices and practical challenges. Proceedings of the 26th ACM SIGKDD
	international conference on knowledge discovery & data mining. 10.1145/3394486.3406707
Follow Reference	Chaddad A. Peng J. Xu J. Bouridane A. (2023). Survey of Explainable AI Techniques in Healthcare.Sensors (Basel), 23(2), 634. 10.3390/s2302063436679430
Follow Reference	Clement T. Kemmerzell N. Abdelaal M. Amberg M. (2023). XAIR: A Systematic Metareview of Explainable AI (XAI) Aligned to the Software Development Process.Machine Learning and
	Knowledge Extraction, 5(1), 78–108. 10.3390/make5010006

Follow Reference	Collini E. Palesi L. A. I. Nesi P. Pantaleo G. Nocentini N. Rosi A. (2022). Predicting and Understanding Landslide Events with Explainable AI.IEEE Access : Practical Innovations, Open Solutions, 10, 31175–31189. 10.1109/ACCESS.2022.3158328
Follow Reference	Dastile X. Celik T. (2021). Making Deep Learning-Based Predictions for Credit Scoring Explainable.IEEE Access : Practical Innovations, Open Solutions, 9, 50426–50440. 10.1109/ACCESS.2021.3068854
	Dilmegani, C. (2023). <i>Explainable AI (XAI) in 2023: Guide to enterprise-ready AI</i> . Retrieved from https://research.aimultiple.com/xai/ (https://research.aimultiple.com/xai/)
Follow Reference	Ettazi W. Nassar M. (2023). Towards a cognitive engineering of transactional services in IoT based systems.Journal of Systems and Software, 200, 111634. Advance online publication. 10.1016/j.jss.2023.111634
Follow Reference	Fernández J. V. (2023). Artificial Intelligence in Government: Risks and Challenges of Algorithmic Governance in the Administrative State.Indiana Journal of Global Legal Studies, 30(1), 65–95. 10.2979/gls.2023.a886163
Follow Reference	Fiok K. Farahani F. V. Karwowski W. Ahram T. (2022). Explainable artificial intelligence for education and training. The Journal of Defense Modeling and Simulation, 19(2), 133–144. 10.1177/15485129211028651
Follow Reference	Freire W. P. Melo W. S. Jr Do Nascimento V. D. Nascimento P. R. M. de Sá A. O. (2022). Towards a Secure and Scalable Maritime Monitoring System Using Blockchain and Low-Cost IoT Technology.Sensors (Basel), 22(13), 4895. Advance online publication. 10.3390/s2213489535808390
Follow Reference	Gaur L. Arora G. K. Jhanjhi N. Z. (n.d.). Deep Learning Techniques for Creation of DeepFakes. In DeepFakes (pp. 23–34). CRC Press. 10.1201/9781003231493-3
Follow Reference	Gaur, L., Jhanjhi, N. Z., Bakshi, S., & Gupta, P. (2022). <i>Analyzing Consequences of Artificial Intelligence on Jobs using Topic Modeling and Keyword Extraction</i> . Paper presented at the 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 10.1109/ICIPTM54933.2022.9754064
Follow Reference	Hanif M. Ashraf H. Jalil Z. Jhanjhi N. Z. Humayun M. Saeed S. Almuhaideb A. M. (2022). AI-Based Wormhole Attack Detection Techniques in Wireless Sensor Networks.Electronics (Basel), 11(15), 2324. 10.3390/electronics11152324
Follow Reference	Heimstädt M. Dobusch L. (2020). Transparency and accountability: Causal, critical and constructive perspectives.Organization Theory, 1(4). 10.1177/2631787720964216
	Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). <i>Metrics for explainable AI: Challenges and prospects</i> .arXiv preprint arXiv:1812.04608.
Follow Reference	Hoijtink M. (2022). 'Prototype warfare': Innovation, optimisation, and the experimental way of warfare.European Journal of International Security, 7(3), 322–336. 10.1017/eis.2022.12
Follow Reference	Holzinger, A., Saranti, A., Molnar, C., Biecek, P., & Samek, W. (2022). <i>Explainable AI methods-a brief overview</i> . Paper presented at the xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria. 10.1007/978-3-031-04083-2_2

Follow Reference	Humayun M. Afsar S. Almufareh M. F. Jhanjhi N. AlSuwailem M. (2022). Smart Traffic Management System for Metropolitan Cities of Kingdom Using Cutting Edge Technologies. Journal of Advanced Transportation, 2022, 2022. 10.1155/2022/4687319
Follow Reference	Humayun M. Ashfaq F. Jhanjhi N. Z. Alsadun M. K. (2022). Traffic management: Multi-scale veh. detection in varying weather conditions using yolov4 and spatial pyramid pooling network.Electronics (Basel), 11(17), 2748. 10.3390/electronics11172748
Follow Reference	Humayun M. Jhanjhi N. Z. Almotilag A. Almufareh M. F. (2022). Agent-based medical health monitoring system.Sensors (Basel), 22(8), 2820. 10.3390/s2208282035458805
Follow Reference	Humayun M. Niazi M. Almufareh M. F. Jhanjhi N. Mahmood S. Alshayeb M. (2022). Software-as-a- Service Security Challenges and Best Practices: A Multivocal Literature Review.Applied Sciences (Basel, Switzerland), 12(8), 3953. 10.3390/app12083953
Follow Reference	Humayun, M., Sujatha, R., Almuayqil, S. N., & Jhanjhi, N. (2022). <i>A transfer learning approach with a convolutional neural network for the classification of lung carcinoma</i> . Paper presented at the Healthcare. 10.3390/healthcare10061058
Follow Reference	Islam M. R. Ahmed M. U. Barua S. Begum S. (2022). A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Applied Sciences (Basel, Switzerland), 12(3), 1353. 10.3390/app12031353
Follow Reference	Ivars-Baidal J. Casado-Díaz A. B. Navarro-Ruiz S. Fuster-Uguet M. (2023). Smart tourism city governance: Exploring the impact on stakeholder networks.International Journal of Contemporary Hospitality Management. Advance online publication. 10.1108/IJCHM-03-2022-0322
Follow Reference	Jagatheesaperumal S. K. Pham QV. Ruby R. Yang Z. Xu C. Zhang Z. (2022). Explainable AI over the Internet of Things (IoT): Overview, State-of-the-Art and Future Directions.IEEE Open Journal of the Communications Society, 3, 2106–2136. 10.1109/OJCOMS.2022.3215676
Follow Reference	Javaid S. Fahim H. Zeadally S. He B. (2023). Self-powered Sensors: Applications, Challenges, and Solutions.IEEE Sensors Journal, 23(18), 1–1. 10.1109/JSEN.2023.3241947
	Khan, A., Jhanjhi, N., & Humayun, M. (2020). Secure smart and remote multipurpose attendance monitoring system. <i>EAI Endorsed Transactions on Energy Web</i> , 7(30).
	Khan, A., Jhanjhi, N. Z., & Humayun, M. (2022). <i>The Role of Cybersecurity in Smart Cities</i> . Academic Press.
	Khan, A., Jhanjhi, N. Z., & Sujatha, R. (2022). Emerging Industry Revolution IR 4.0 Issues and Challenges. In <i>Cyber Security Applications for Industry 4.0</i> (pp. 151-169): Chapman and Hall/CRC.
Follow Reference	Khan M. M. Vice J. (2022). Toward Accountable and Explainable Artificial Intelligence Part One: Theory and Examples.IEEE Access : Practical Innovations, Open Solutions, 10, 99686–99701. 10.1109/ACCESS.2022.3207812
Follow Reference	Khandelwal M. Rout R. K. Umer S. Sahoo K. S. Jhanjhi N. Shorfuzzaman M. Masud M. (2023). A Pattern Classification Model for Vowel Data Using Fuzzy Nearest Neighbor.Intelligent Automation & Soft Computing, 35(3), 3587–3598. 10.32604/iasc.2023.029785

Follow Reference	Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W., & Lapuschkin, S. (2020). <i>Towards best practice in explaining neural network decisions with LRP</i> . Paper presented at the 2020 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN48605.2020.9206975	
Follow Reference	Kuiper, O., van den Berg, M., van der Burgt, J., & Leijnen, S. (2022). <i>Exploring Explainable AI in Financial Sector: Perspectives of Banks and Supervisory Authorities.</i> Paper presented at the Communications in Computer and Information Science. 10.1007/978-3-030-93842-0_6	
	Kuźba, M., & Biecek, P. (2020). <i>What Would You Ask the Machine Learning Model? Identification of User Needs for Model Explanations Based on Human-Model Conversations</i> . Paper presented at the Communications in Computer and Information Science.	
Follow Reference	Lo Piano S. (2020). Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward.Humanities & Social Sciences Communications, 7(1), 1–7. 10.1057/s41599-020-0501-9	
Follow Reference	Maddikunta P. K. R. Pham QV. Prabadevi B. Deepa N. Dev K. Gadekallu T. R. Liyanage M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. 10.1016/j.jii.2021.100257	
Follow Reference	Mahmood D. Latif S. Anwar A. Hussain S. J. Jhanjhi N. Sama N. U. Humayun M. (2021). Utilization of ICT and AI techniques in harnessing residential energy consumption for an energy-aware smart city: A review.International Journal of Advanced and Applied Sciences, 8(7), 50–66.	
Follow Reference	Malmio I. (2023). Ethics as an enabler and a constraint – Narratives on technology development and artificial intelligence in military affairs through the case of Project Maven.Technology in Society, 72, 102193. Advance online publication. 10.1016/j.techsoc.2022.102193	
Follow Reference	Mankodiya H. Obaidat M. S. Gupta R. Tanwar S. (2021). XAI-AV: Explainable Artificial Intelligence for Trust Management in Autonomous Vehicles.Proceedings of the 2021 IEEE International Conference on Communications, Computing, Cybersecurity and Informatics, CCCI 2021. 10.1109/CCCI52664.2021.9583190	
Follow Reference	Morgan F. E. Boudreaux B. Lohn A. J. Ashby M. Curriden C. Klima K. Grossman D. (2020). <i>Military applications of artificial intelligence: Ethical concerns in an uncertain world</i> . Academic Press.	
Follow Reference	Muthukkumar, R., Garg, L., Maharajan, K., Jayalakshmi, M., Jhanjhi, N., Parthiban, S., & Saritha, G. (2022). A genetic algorithm-based energy-aware multi-hop clustering scheme for heterogeneous wireless sensor networks. PeerJ. Computer Science, 8, e1029.	
Follow Reference	Muzammal S. M. Murugesan R. K. Jhanjhi N. Hossain M. S. Yassine A. (2022). Trust and Mobility- Based Protocol for Secure Routing in Internet of Things.Sensors (Basel), 22(16), 6215. 10.3390/s2216621536015975	
Follow Reference	Narteni S. Orani V. Cambiaso E. Rucco M. Mongelli M. (2022). On the Intersection of Explainable and Reliable AI for Physical Fatigue Prediction.IEEE Access : Practical Innovations, Open Solutions, 10, 76243–76260. 10.1109/ACCESS.2022.3191907	

Follow Reference	Nazar M. Alam M. M. Yafi E. Su'Ud M. M. (2021). A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare with Artificial Intelligence Techniques.IEEE Access : Practical Innovations, Open Solutions, 9, 153316–153348. 10.1109/ACCESS.2021.3127881
Follow Reference	Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., & Aram, F. (2020). <i>State of the art survey of deep learning and machine learning models for smart cities and urban sustainability</i> . Paper presented at the Engineering for Sustainable Future: Selected papers of the 18th International Conference on Global Research and Education Inter-Academia–2019. 10.1007/978-3-030-36841-8_22
Follow Reference	Pal S. Jhanjhi N. Abdulbaqi A. S. Akila D. Alsubaei F. S. Almazroi A. A. (2023). An Intelligent Task Scheduling Model for Hybrid Internet of Things and Cloud Environment for Big Data Applications.Sustainability (Basel), 15(6), 5104. 10.3390/su15065104
Follow Reference	Prabakar D. Sundarrajan M. Manikandan R. Jhanjhi N. Masud M. Alqhatani A. (2023). Energy Analysis-Based Cyber Attack Detection by IoT with Artificial Intelligence in a Sustainable Smart City.Sustainability (Basel), 15(7), 6031. 10.3390/su15076031
Follow Reference	Rowe N. C. (2022). The comparative ethics of artificial-intelligence methods for military applications.Frontiers in Big Data, 5, 991759. Advance online publication. 10.3389/fdata.2022.99175936172549
Follow Reference	Saeed W. Omlin C. (2023). Explainable ai (xai): A systematic meta-survey of current challenges and future opportunities.Knowledge-Based Systems, 263, 110273. 10.1016/j.knosys.2023.110273
Follow Reference	Saraswat D. Bhattacharya P. Verma A. Prasad V. K. Tanwar S. Sharma G. Bokoro P. N. Sharma R. (2022). Explainable AI for Healthcare 5.0: Opportunities and Challenges.IEEE Access : Practical Innovations, Open Solutions, 10, 84486–84517. 10.1109/ACCESS.2022.3197671
Follow Reference	Sarker I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions.SN Computer Science, 2(6), 420. 10.1007/s42979-021-00815- 134426802
Follow Reference	Schiff D. (2021). Out of the laboratory and into the classroom: The future of artificial intelligence in education.AI & Society, 36(1), 331–348. 10.1007/s00146-020-01033-832836908
Follow Reference	Shah I. A. Jhanjhi N. Z. Amsaad F. Razaque A. The Role of Cutting-Edge Technologies in Industry 4.0. In Cyber Security Applications for Industry 4.0 (pp. 97–109). Chapman and Hall/CRC. 10.1201/9781003203087-4
Follow Reference	Sing R. Bhoi S. K. Panigrahi N. Sahoo K. S. Jhanjhi N. AlZain M. A. (2022). A Whale Optimization Algorithm Based Resource Allocation Scheme for Cloud-Fog Based IoT Applications.Electronics (Basel), 11(19), 3207. 10.3390/electronics11193207
Follow Reference	Sreedevi A. G. Nitya Harshitha T. Sugumaran V. Shankar P. (2022). Application of cognitive computing in healthcare, cybersecurity, big data and IoT: A literature review.Information Processing & Management, 59(2), 102888. Advance online publication. 10.1016/j.ipm.2022.102888
Follow Reference	Srinivasu P. N. Sandhya N. Jhaveri R. H. Raut R. (2022). From blackbox to explainable AI in healthcare: Existing tools and case studies. Mobile Information Systems, 2022, 1–20. 10.1155/2022/8167821

	Srivastava, G., Jhaveri, R. H., Bhattacharya, S., Pandya, S., Maddikunta, P. K. R., Yenduri, G., Gadekallu, T. R. (2022). XAI for cybersecurity: state of the art, challenges, open issues and future directions.arXiv preprint arXiv:2206.03585
	stock_photos_agency. (2005). <i>Robot touching Human Hand</i> . Retrieved from https://www.123rf.co. (https://www.123rf.com)
Follow Reference	Suffian M. Graziani P. Alonso J. M. Bogliolo A. (2022). FCE: Feedback Based Counterfactual Explanations for Explainable AI.IEEE Access : Practical Innovations, Open Solutions, 10, 72363–72372. 10.1109/ACCESS.2022.3189432
Follow Reference	Taj I. Zaman N. (2022). Towards Industrial Revolution 5.0 and Explainable Artificial Intelligence: Challenges and Opportunities.International Journal of Computing and Digital Systems, 12(1), 295–320. 10.12785/ijcds/120128
Follow Reference	Trusilo D. Danks D. (2023). Artificial intelligence and humanitarian obligations. Ethics and Information Technology, 25(1), 12. Advance online publication. 10.1007/s10676-023-09681-2
Follow Reference	Vaccari I. Carlevaro A. Narteni S. Cambiaso E. Mongelli M. (2022). eXplainable and Reliable Against Adversarial Machine Learning in Data Analytics.IEEE Access : Practical Innovations, Open Solutions, 10, 83949–83970. 10.1109/ACCESS.2022.3197299
Follow Reference	Vermeire, T., Laugel, T., Renard, X., Martens, D., & Detyniecki, M. (2021). <i>How to Choose an Explainability Method? Towards a Methodical Implementation of XAI in Practice</i> . Paper presented at the Communications in Computer and Information Science. 10.1007/978-3-030-93736-2_39
Follow Reference	Vice J. Khan M. M. (2022). Toward Accountable and Explainable Artificial Intelligence Part Two: The Framework Implementation.IEEE Access : Practical Innovations, Open Solutions, 10, 36091–36105. 10.1109/ACCESS.2022.3163523
Follow Reference	von Eschenbach W. J. (2021). Transparency and the Black Box Problem: Why We Do Not Trust AI.Philosophy & Technology, 34(4), 1607–1622. 10.1007/s13347-021-00477-0
Follow Reference	Woźnica, K., & Biecek, P. (2021). <i>Towards Explainable Meta-learning</i> . Paper presented at the Communications in Computer and Information Science. 10.1007/978-3-030-93736-2_38
Follow Reference	Xu X. Lu Y. Vogel-Heuser B. Wang L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception.Journal of Manufacturing Systems, 61, 530–535. 10.1016/j.jmsy.2021.10.006
Follow Reference	Zaheer, A., Tahir, S., Humayun, M., Almufareh, M. F., & Jhanjhi, N. (2022). <i>A novel Machine learning technique for fake smart watches advertisement detection</i> . Paper presented at the 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). 10.1109/MACS56771.2022.10023151
Follow Reference	Zahra F. Jhanjhi N. Brohi S. N. Khan N. A. Masud M. AlZain M. A. (2022). Rank and wormhole attack detection model for RPL-based internet of things using machine learning.Sensors (Basel), 22(18), 6765. 10.3390/s2218676536146111
Follow Reference	Zaman N. Gaur L. Humayun M. (2022). Approaches and Applications of Deep Learning in Virtual Medical Care. IGI Global. 10.4018/978-1-7998-8929-8

	Zednik, C. (2019). Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence.arXiv e-prints, arXiv: 1903.04361.
Follow Reference	Zednik C. (2021). Solving the black box problem: A normative framework for explainable artificit intelligence.Philosophy & Technology, 34(2), 265–288. 10.1007/s13347-019-00382-7
Follow Reference	Zhang Y. Weng Y. Lund J. (2022). Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics (Basel), 12(2), 237. 10.3390/diagnostics1202023735204328

Request Access

You do not own this content. Please login to recommend this title to your institution's librarian or purchase it from the IGI Global bookstore (/chapter/the-need-for-explainable-ai-in-industry-50/336870).

Username or email:

Soobiasaeed1@gmail.com

Password:

•••••

Log In >

Forgot individual login password? (/gateway/login/reset-password/)

Create individual account (/gateway/login/create-account/)

Research Tools

Database Search (/gateway/) | Help (/gateway/help/) | User Guide (/gateway/user-guide/) | Advisory Board (/gateway/advisory-board/)

•

User Resources

Librarians (/gateway/librarians/) | Researchers (/gateway/researchers/) | Authors (/gateway/authors/)

Librarian Tools

COUNTER Reports (/gateway/librarian-tools/counter-reports/) | Persistent URLs (/gateway/librarian-tools/persistent-urls/) | MARC Records (/gateway/librarian-tools/marc-records/) | Institution Holdings (/gateway/librarian-tools/institution-holdings/) | Institution Settings (/gateway/librarian-tools/institution-settings/)

Librarian Resources

Training (/gateway/librarian-corner/training/) | Title Lists (/gateway/librarian-corner/title-lists/) | Licensing and Consortium Information (/gateway/librarian-corner/licensing-and-consortium-information/) | Promotions (/gateway/librarian-corner/promotions/)

Policies

Terms and Conditions (/gateway/terms-and-conditions/)

(http://www.facebook.com/pages/IGI-

Global/138206739534176?ref=sgm)

(http://twitter.com/igiglobal) (https://www.linkedin.com/company/igiglobal)

(http://www.world-forgottenchildren.org)

(https://publicationethics.org/category/publisher/igiglobal)

Copyright © 1988-2024, IGI Global - All Rights Reserved