
Journal of King Saud University – Computer and Information Sciences xxx (xxxx) xxx
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
A virtual execution platform for OpenFlow controller using NFV
https://doi.org/10.1016/j.jksuci.2020.03.001
1319-1578/� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: bt10@iitbbs.ac.in (B.K. Tripathy), ashishluhach@acm.org (A.Kr.

Luhach), noorzaman.jhanjhi@taylors.edu.my (N.Z. Jhanjhi), swagatkumar.jena@tat.
ac.in (S.K. Jena).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual execution platform for OpenFlow controller using NFV, Journal of Kin
University – Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2020.03.001
Bata Krishna Tripathy a, Kshira Sagar Sahoo b, Ashish Kr. Luhach c, N.Z. Jhanjhi d,⇑, Swagat Kumar Jena e

a School of Electrical Sciences, Indian Institute of Technology, Bhubaneswar, India
bDepartment of Information Technology, VNR VJIET, Hyderabad, India
c The PNG University of Technology, Papua New Guinea
d School of Computer Science and Engineering SCE, Taylor’s University, Malaysia
e Trident Academy of Technology, Bhubaneswar, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 November 2019
Revised 20 February 2020
Accepted 1 March 2020
Available online xxxx

Keywords:
Software defined networking
Network functions
Virtualization
Security
The Software Defined Networking (SDN) paradigm decouples the network control functions from the
data plane and offers a set of software components for flexible and controlled management of networks.
SDN has promised to provide numerous benefits in terms of on-demand provisioning, automated load
balancing, streamlining physical infrastructure, and flexibility in scaling network resources. In order to
realize these network service offerings, there is an important need for developing an efficient, robust,
and secure execution platform. As a primary contribution, we present a novel virtual execution platform
for the OpenFlow controller using Network Function Virtualization (NFV). Theoretically, NFV can apply to
any network function, which can simplify the managing of the heterogeneous data plane. The character-
istics of our proposed architecture include pipe-lined processing of network traffic, virtualized and repli-
cated execution of network functions, isolation between task nodes, and random mapping of traffic to
task nodes. The proposed architecture has two major components: a Network Packet Schedulers (NPS)
and a Task Engine (TE). The TE consists of Task Nodes (TNs) which are responsible for executing different
network functions on various traffic flows and each TN is realized as a virtual machine. Upon receiving
traffic from the data plane, NPS analyses the functional requirements of the traffic and different controller
performance parameters. Then it allocates the traffic to appropriate TNs for executing necessary network
functions. In this respect, it provides performance benefits, robustness, fine-grained modularity, and
strong isolation security in the processing of traffic flows on the SDN platform. Efficacy of our proposed
architecture has been demonstrated with a case study.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The growth of the Internet has transformed the world to a dig-
ital society where the goal is to connect everything and access from
anywhere (Wood, 2015; Blenk, 2016; Sahoo et al., 2019). In a tra-
ditional IP network, controlling and managing large network sys-
tems with a vertically integrated set of network control functions
becoming increasingly complex. In this regard, Software Defined
Networking (SDN) and OpenFlow are the emerging paradigms that
promise to change the state of the art of networking, where the
network control logic is isolated from its underlying hardware
(Sahoo et al., 2016; Nishtha et al., 2014; Sahoo et al., 2019). It offers
a set of software components for flexible and controlled manage-
ment of networks where network functions may span from traffic
forwarding and flow control monitoring to security enforcement
(Li and Yong, 2015; Karakus and Murat, 2017). The significant
advantages of SDN include the ability to introduce network inno-
vations faster and to radically simplify and automate the manage-
ment of large networks with on-demand provisioning (Ghodsi
et al., 2011; Ferrús et al., 2016).

Despite several advantages, there are various challenges
involved in SDN, such as managing network scalability and secu-
rity, etc. Different challenges arise due to the lack of standardized
execution platform, control-data plane interfaces, and security
enforcement functions (Jammal, 2014). Metzler (2012) reported
that, when the network scales up, the SDN controller can become
g Saud
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a key bottleneck. When the number of switches and traffic flows
increases, more requests are queued up at the controller. In turn,
it increases the response time of the requested events. Besides,
OpenFlow based APIs and the centralized management of these
functions can introduce various security threats to the underlying
network. These challenges demand a seamless, and efficient execu-
tion platform for the SDN control plane to serve different network
functions and preventing possibilities of various security threats
(Martins et al., 2014; Koponen et al., 2014; Sahoo, 2019).

In this paper, we present a novel virtual execution platform for
the SDN control plane that uses the concept of NFV (Zahoor and
Naaz Mir, 2018). NFV is about wide range of network functions,
which is driven primarily by new network requirements. It put
back network services issued by dedicated hardware devices with
virtualized software. The network services which were required
specialized hardware, with the NFV technology, they can run over
standard commodity servers,in turn it reduces the overall cost
(Almusaylim and Zaman, 2019).

The proposed has two major components,i.e. Task Engine (TE)
and Network Packet Schedulers (NPS). The TEs are responsible
for executing different network functions on various traffic flows.
These TEs maintain a data structure to record several instances
of different functions that are being served by it. The NPS analyses
the functional requirements of the traffic and different controller
performance parameters. Further NPS allocates the traffic to appro-
priate Task Nodes (TN) for executing necessary network functions.
The TE consists of Task Nodes. The important characteristics of this
architecture include pipe-lined processing of network traffic, virtu-
alized and replicated execution of network functions, and random
mapping of traffic to TNs (Tripathy et al., 2016).

The rest of the paper is organized as follows. Section 2 presents
the proposed SDN controller platform. We described the control
flow of traffic on the proposed platform in Section 3. Section 4 pre-
sents the performance enhancement of the proposed architecture.
The evaluation of the proposed architecture has demonstrated
with a case study in Section 5 followed by the concluding remarks
in Section 6.
2. Proposed SDN controller execution platform architecture

This section presents the architecture of the proposed SDN con-
troller platform. An abstract view of the overall architecture has
illustrated in Fig. 1. Before illustrating the proposed execution plat-
form, let us discuss briefly on the entities involved in the SDN con-
troller. There are two major entities: (i) user network applications
and (ii) network functions. A user can request a specific network
service with various requirements. Such service requests are
Fig. 1. An abstract view of the overall Architecture.
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named as user network applications. For example, an employee
of an enterprise network may want to use a VPN service to connect
to the R&D subnet of the organization with high bandwidth, min-
imum delay, and appropriate security enforcement. A network
function, on the contrary, is a network control operation or task
to be executed corresponding to a user application. A sequence
or a list of network functions are often required to execute for serv-
ing a network function. We consider six possible network functions
namely (i) routing control, (ii) flow monitoring, (iii) policy check-
ing, (iv) bandwidth guarantee, (v) security enforcement, and (vi)
load balancing. The architecture of the proposed execution plat-
form for SDN controller is shown in Fig. 2. It consists of two com-
ponents, namely Network Packet Scheduler and Task Engine. The
Network Packet Scheduler is called NPS and Packet Schedulers
(PS) are its component. The Task Engine is also known as TE and
Task Nodes (TN) are the components of TE. These nodes are
responsible for executing different network functions on various
traffic flows whereas the packet scheduler intelligently allocates
the traffic to appropriate nodes. The detailed functionalities of
these components are described below, while the abbreviations/
notations used for different parameters are presented in Table 1.
(See Fig. 3).
2.1. Task nodes and their implementation

A TN serves as an execution unit for running a set of network
functions. Each TN is responsible for executing a finite number
(>1) of network functions limited by a threshold (d). The parameter
d indicates the maximum degree of parallelism which may vary
with the type of network functions running on it and the applica-
tion context. For the purpose of simplicity, we consider a prede-
fined d associated to each task node. In a node, a network
function (NF) is associated with a unique tag that is used to refer-
ence that function in the corresponding node. A network function
can be served by multiple task nodes.

Each TN is realized as a virtual machine with a predefined and
fixed set of computing and storage resources. A TN has an input
queue (first-in, first out) that keeps track of the packet processing
request received from NPS. Packet processing request consists of a
packet header and a list containing information about Task Nodes
(TNs). Details about the list can be found in a later section. In order
Fig. 2. Proposed virtual Execution platform for SDN controller.
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Table 1
Abbreviations and Symbols used in the paper.

Abbreviation/Notation Meaning

TN Task Node
NF Network Function
PS Packet Scheduler
TNi ith Task Node
PSi ith Packet Scheduler
NFi ith Network Function
NFi;k Tag of NFi in TNk

SEQðNFiÞ Sequence OF NF
NFAT NF Allocation Table
TNAT TN Status Table

TNP
i

Current Queue Size In TNi

TNi;st Current State Of TNi

NFti Avg. Completion Time For NFi

Fig. 3. Flow of a packet through this Controller.
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to serve a packet, the TN takes a packet from the queue, reads the
tag of the packet, matches this tag with its NF tags, and executes
the function corresponding to the matched tag on the packet. Upon
successful completion of the network function, the TN updates the
status of the packet. Further, it sends an acknowledgment to NPS
Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual e
University – Computer and Information Sciences, https://doi.org/10.1016/j.jksu
(i.e., the corresponding PS) and sends the packet to the next TN
on the list. Inter-TN communication is accomplished through the
message passing.

A TN can be loaded with new NFs or updated on existing NFs
depending on the requirements. This configuration is governed
and synchronized by the PS. During this configuration period, the
environment of the corresponding TN is saved and the state is
set to the BLOCKED state. The saving state consists of the NFs it
is assigned with, it’s packet processing status, queue content etc.
Once the configuring process is over the TN becomes active (the
ACTIVE state). It then resumes execution from the saved environ-
ment. If a TN crashes due to some error then the TN is suspended
with an error message sent to the associated PS.
2.2. Packet schedulers

A packet scheduler keeps track of the information about the
TNs. This information includes the state of each TN, network func-
tions running on these TNs along with their tags, and processing
statistics (average packet processing time, failure rate, current
queue size, etc.). A network packet scheduler has two main tasks,
namely NF-sequence determination and TN allocation:

� NF-Sequence Determination: The PS extracts information from
the packet header that includes source and destination IP
addresses, source and destination ports, etc. Then, it determines
a list of NFs and their sequence that are required to be executed
to process the packet request. This NF list is created using filter-
ing criteria based on the extracted fields and criteria are pro-
vided by different applications. A packet, specific to an
application must be filtered through IP subnet or port number
required by the corresponding application. A packet should be
provided with all the NFs in the sequence for successful execu-
tion of the application.

� TN Allocation:PS initializes a list L to empty.This list will con-
tain entries of 2-tuple < TNk;NFi;k >. It iterates through each
entry of the NF-sequence(generated in the previous step).For
each i’th entry say NFi , it adds a tuple < TNk;NFi;k > to the list
L.Here, TNk is the k’th active TN and NFi;k is the tag of NFi asso-
ciated with TNk. The tuple creation process is discussed in detail
in Algorithm1. It requires two data structures:
– Network Function Allocation Table (NFAT)
– Task Node Status Table (TNST)

A detailed description of these structures are described in the fol-
lowing section.

After updating the list by iterating through the NF sequence, the
packet scheduler sends the packet to the first TN in the sequence.
The TN sends an acknowledgment to the corresponding PS after
successfully execution of corresponding network function in the
TN. The PS updates the statistics of the TN. There are often more
than one PS, each of which is responsible for scheduling packet
requests of data plane switches connected to it. When a packet
arrives at the controller, it is forwarded to corresponding PS based
on the tag associated with the packet. As multiple schedulers work
simultaneously, it allows serving multiple requests simultaneously
and, thus, providing fault-tolerance as explained later in this paper.

In addition, a PS controls the load of new network functions and
updates existing network functions to a TN depending on the
change in the context or user requirements. In such cases, the
packet scheduler decodes the requirements, finds the list of net-
work functions to serve the requirements, and accordingly updates
the filtering criteria and network functions (if necessary). All the
packet schedulers communicate with each other and maintain a
consistent state of the system. The changes made to any TN or
xecution platform for OpenFlow controller using NFV, Journal of King Saud
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any update sent by a TN, have reflected to all schedulers. The next
section presents the control flow of a packet through the proposed
controller execution architecture.
3. Control flow of a packet in the proposed platform

This section presents a detailed description of how a packet
flows through our proposed controller execution platform. Fig. 2
shows the flow chart depicting the control flow. The control flow
consists of a sequence of four steps as described below.

Step 1. A new packet is mapped to appropriate packet
scheduler

When a packet arrives at a data plane switch, if there is no
match found with the flow-rule of the corresponding switch, the
packet is sent to the controller. The tag-bit associated to the packet
determines the packet scheduler to which the processing is to be
routed. This is realized through a simple modular hash-based map-
ping function on some fields of the packet header.

f: tag[packet] ) PSi.
Step 2. Packet Scheduler de-queues a packet from its queue

and allocates appropriate Task node.
This step consists of following tasks. [subtask-a]: Extract

< PORTsrc; PORTdstn; IPsrc; IPdstn > from packet header. Let, this tuple
be H. Create a sequence of network functions, SEQðNFiÞ based on
H and available information about application requirements.

[subtask-b]: Initialize List L ¼ £. Iterate through SEQðNFiÞ. For
each NFi, find an active Task node TNk and corresponding tag NFi;k.
Add < TNk;NFi;k > to L.

NFi;k signifies NFi is running on TNk with tag NFi;k.
[subtask-c]: Send the packet along with the sequence to the

first task node (TN) in the list.
Step 3. Execution of Network Function in Task Node. Upon

receiving a packet, the corresponding task node removes an entry
from the list, reads tag and runs corresponding network function.
The TN sends an acknowledgment to PS after successful comple-
tion of network function, and forwards the packet to next TN in
the list.

Step 4. Iterate step 3 The Step 3 is iterated until all the network
functions are executed on the packet.
3.1. Data structure for implementing control flow

For realizing the step 2(b) of the above control flow operations,
following two data-structures are required.

1. Network Function Allocation Table(NFAT): This table records
the availability of executing network functions to the Task
Nodes. An NF might be available at more than one Task Node.
This table is indexed by NF number and one entry of NFAT is
of the following form:
< NFi;� TNj; TN

p
j >; ::; < TNk; TN

p
k � The queue size of a TN is

increased by one after allocation of a packet to the task node
(TN) for execution of a network function. It is decreased by
one after receiving an acknowledgement about completion of
the related network functions from any TN.

2. Task Node Status Table(TNST): This table stores the current
state of a TN, list of Network Function available in it along with
their tag number. The table is indexed by TN number. An entry
in TNST is of the form:< TNi; TNi;st; < 1;NFi;NF

t
i >; :;

< k;NFp;NF
t
p �

The detailed algorithm of Task Node Allocation to Packet
requests is presented in Algorithm1.
Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual e
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Algorithm1 Task Node Allocation to Packet Requests

1: procedure FINDTASKNODESEQðNFiÞ
2: Initialize List L to empty
3: foreach NFi in SEQðNFiÞdo
4: TNp

min = INT-MAX
5: Initialize TNmin to empty
6: foreach < TNj; TN

p
j > in NFAT[NFi]do

7: ifTNST½TNj�:state ¼ ACTIVEthen
8: ifTNp

j < TNp
minthen

9: TNp
min ¼ TNp

j

10: Set TNmin to empty
11: Append TNj to TNmin

12: else ifTNp
j ¼ TNp

min then

13: Append TNj to TNmin

14: end if
15: end if
16: end for
17: ½TNopt ;NFtag �= FOTN(TNmin;NFi)

//FOTN: FindOptTaskNode
18: Append < TNopt ;NFtag > to L
19: end for
20: Update queue entry for TNopt

21: Return L
22: end procedur
23: procedure FINDOPTTASKNODETNmin;NFi
24: TNt

min=INT-MAX
25: Initialize TNopt to empty
26: NFtag ¼ 0
27: foreach < TNj > in TNmindo

28: ifTNST½TNj;NFi�:time < THt
minthen

29: TNt
min=TNST½TNj;NFi�:time

30: TNtag = TNST½TNj;NFi�:tag
31: TNopt = THj

32: end if
33: end for
34: Return [TNopt ;NFtag]
35: end procedure

The following assumption has been made on the execution of
network functions in the proposed Execution Platform.

� At any time instant, for each network function(NF), at least one
TN is active for executing the function.

� Degree of Parallelism (DoP) is the maximum number of packets
waiting in thequeueof a TN. TheDoPof a tasknode (TN) is enough
to serve all the packet allocated to a TN at any instance of time.

The next section presents the performance enhancement char-
acteristics of our proposed architecture.

4. Performance enhancement characteristics

Our proposed controller execution platform architecture has
the following characteristics that improve the performance and
strengthens the security of SDN controller and the underlying
network.

4.1. Pipelined processing

A large no of packets can be processed in pipelined fashion as
the TNs provide different and independent services. A task node
xecution platform for OpenFlow controller using NFV, Journal of King Saud
ci.2020.03.001
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writes an update after processing a packet and schedules it to next
task node in the list. This improves the throughput of the system.
4.2. Network Function replication at task nodes

The Network Functions provided in the controller are replicated
at different TNs, i.e., the same function is implemented in more
than one TN. All the TNs running one service are in sync with each
other and the packet scheduler is to maintain a consistent state for
that Network Functions. This provides more than one path to pro-
cess a flow, thus it can handle multiple similar flows simultane-
ously. The packet scheduler maintains a flag to keep track of any
modification to the network functions in both network function
allocation table and task node status table. Hence, if any change
in the flag is detected, it triggers the modification process in all
the replicated copies of the network functions to maintain syn-
chronization among them.
Fig. 4. A segment of an Enterprise network.
4.3. Intelligent scheduling of Network Functions

This is realized based on the service replication at different TNs.
While allocating a TN for an NF, we have considered the following
assumptions.

� Select the TN which has minimum queue length. This ensures
less queuing delay.

� If there are multiple TN with same queue length, select one
which has less average execution time for that NF. Thus, it
ensures a fast response time.

Combining the above rules we have realized automatic load bal-
ancing among the TNs. As task nodes are allocated with least queue
length, there is no possibility that a TN gets to its maximum queue
length while others at less queue length. This ensures the finite-
ness of DoP. Task Node Allocation algorithm has two procedures.
The FindTaskNode procedure finds TN with minimum queue
length. If there is more than one TNs with same queue size, Fin-
dOptTaskNode procedure finds the TN which takes minimum aver-
age time to complete the corresponding NF.
4.4. Random allocation of packets to task nodes

For a similar type of traffic, our proposed algorithm allocates
the packets to different TNs to serve the same Network Section.
This introduces randomness in the allocation of TNs to packets
which makes it difficult for the attacker to crack the execution sig-
nature of a packet. This ensures stronger security.
5. Evaluation of proposed controller execution platform

This section presents the performance evaluation of our pro-
posed controller execution platform with a case study. Fig. 4 shows
an instance of an enterprise network with four subnets corre-
sponding to different departments.

The list of requirements on various network traffic is stated as
follows:

Req1: All outbound traffic from CR should go through the proxy
server.

Req2: All traffic from employees working outside should be
served through VPN to RD and Sales, with high Bandwidth.

Req3: Any incoming traffic to RD and Finance should be for-
warded through policy check and security compliance.

Req4: Any outbound traffic from RD and Finance should guaran-
tee high bandwidth and availability.
Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual e
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Req5: Customers should be able to communicate to CR through a
secure channel. Let, they connect through port number 8091.

Req6: Internal flooding should be stopped as soon as possible.
We consider the following Network Function (NF) implementa-

tions to serve different traffic with above-mentioned requirements.

� Routing(R)
� Flow Monitoring(FM)
� Policy Checking(PC)
� Bandwidth Guarantee(BW)
� Security Enforcement(SE)
� Load Balancing(LB)

Considering these requirements, we have generated different
traffic with varying traffic rates and evaluated the performance
of our architecture in Mininet simulation platform (Mininet
Documentation, 2020). The following are the NF implementations
corresponding to the traffic with various requirements.

NF implementation (for traffic with Req1)

� DR1:- If IPsrc is from 10.0.4.0/8 and IPdstn is out of the autono-
mous system, send packet to CR1. (R, PC)

� CR1:- If IPsrc is from 10.0.4.0/8 and IPdstn is out of the autono-
mous system, send packet to Proxy server. (R, PC)

NF implementation (for traffic with Req2)

� BorderRouter:- If IPsrc is from outside and IPdstn belongs to
10.0.1.0/8 or 10.0.3.0/8 and VPN is connected(Can be checked
through port number) send packet to CR0(in case 10.0.1.0/8)
or CR1(in case 10.0.3.0/8), then bypass firewall and reserve
required bandwidth (R, PC, BW).

� CR0:- If IPsrc is from outside and IPdstn is from 10.0.1.0/8, then
send packet to DR0, bypass IDS and reserve required band-
width(R, PC, BW).

NF implementation (for traffic with Req3)

� BorderRouter:- If IPdstn belongs to 10.0.1.0/8 or 10.0.2.0/8, then
send packet to CR0 through firewall(R, PC, SE).

� CR0:- If IPdstn belongs to 10.0.1.0/8 or 10.0.2.0/8, then send
packet to DR0 through IDS (R, PC, SE).
xecution platform for OpenFlow controller using NFV, Journal of King Saud
ci.2020.03.001

https://doi.org/10.1016/j.jksuci.2020.03.001
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NF implementation (for traffic with Req4)

� DR1:- If IPsrc is from 10.0.1.0/8 or 10.0.2.0/8 and IPdstn is out of
the autonomous system, then send packet to CR1 or CR0 bypass-
ing IDS. Reserve required bandwidth for this flow (R, PC, LB,
BW).

� CR0:- If IPsrc is from 10.0.1.0/8 or 10.0.2.0/8 and IPdstn is out of the
autonomous system, then send packet to BorderRouter, bypass
firewall and reserve required bandwidth (R, PC, BW).

NF implementation (for traffic with Req5)

� CR1:- If IPsrc is from out of the autonomous system and
PORTdstn=8091, then send packet to DR1 through IPSec (R, PC,
SE).

NF implementation (for traffic with Req6)

� ANYROUTER:- If IPsrc is from the autonomous system and flow
statistics shows anomaly, drop the flow and check origin of
flooding (R, FM, SE).

For accessing the system throughput, we have executed and
analyzed five different traffic at the same time. The controller exe-
cution platform used in the analysis consists of two Packet Sched-
ulers (PS), four Task Nodes (TN). Each having room for four
Network Functions(NF) which as shown in the Fig. 5. The used
abbreviations, e.g., R, FM, and PC for different network functions
have described earlier. An execution analysis of this traffic is pre-
sented below.

1. Traffic 1: 10.0.1.0/8 to 10.0.2.0/8: NF required :: (R)
2. Traffic 2: 10.0.4.0/8 to out of autonomous system NF required ::

(R, PC)
3. Traffic 3: out-of-autonomous system to 10.0.4.0/8 over port

8091(secured channel for customer) NF required :: (R, PC, SE)
4. Traffic 4: from employee working outside to 10.0.1.0/8 through

VPN NF required :: (R, PC, BW)
5. Traffic 5: 10.0.1.0/8 to out-of-autonomous system NF required

:: (R, PC, LB, BW)

The Fig. 6 shows a schedule of network functions related to
above traffic to different task nodes with respect to timeline. It is
assumed that each NF takes the same amount of time for execu-
tion. The table shows that the total execution time of the above
traffic is 6 unit of time. On the other hand, the sequential execution
Fig. 5. Controller organization for the case study.

Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual e
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of this traffic would have required 13 units of time. Therefore, the
improvement in throughput of our proposed execution platform is
13/6 = 2.16 times. To process this traffic, a sequential execution
would take 13 time units, whereas, our proposed network function
execution platform takes no more than 6 time units, leading to 2.16
times performance improvement. In addition, our platform ensures
fault tolerance during failure of any task node as the same function
can be executed in other task nodes. It also allocates the same type
of traffic (in sequence) to different task nodes based on availability,
which introduces randomness in traffic allocation and thereby,
strengthens the security of the SDN control plane and the underly-
ing network.

According to the literature (White paper, 2012), the deployment
of NFV approaches in an application domain may significantly
affect the overall performance of the system. Usually, the overall
performance degrades in terms of latency. It is due to the imple-
mentation of industry-standard hardware for supporting speedup
Fig. 7. Average processing time and RTT.
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in processing. The latency of a network is measured as Round Trip
Time (RTT). It is defined as the time taken by a packet to be trans-
mitted from a source to destination and receiving a response from
destination to source. For experimentation, Floodlight OpenFlow
controller on mininet platform has been used (OpenFLow, 2020).
The Floodlight controller is chosen due to its efficient management
of the network control functions (Morales et al., 2015). Further,
heterogeneous traffics has generated such as HTTP, FTP, imix, etc.
with varying requirements using an OTCL script. The flow volume
of different traffic is varied from 300 Mbps to 1200 Mbps to verify
the efficacy of our proposed network functions. Hence, we compare
the RTT of our proposed architecture in SDN with the standard
OpenFlow Floodlight controller platform.

Fig. 7a shows the processing time of our architecture and typi-
cal OpenFlow architecture with respect to flow volume (in Mb).
From the experiment, it is observed that the processing time of
packets in our proposed architecture is less than that of typical
OpenFlow architecture. It is due to the pipeline processing of pack-
ets instead of sequential processing. Fig. 7b shows the RTT of the
proposed architecture and standard OpenFlow architecture con-
cerning flow volume. It describes that the RTT in the proposed
architecture is stable as compared to standard OpenFlow architec-
ture. It is because of the implementation of fine-grained modular-
ity in packet allocation and pipeline processing in the proposed
solution. In another experiment, various Quality of Service (QoS)
parameters such as average packet loss and jitter have been esti-
Fig. 8. Impact of various QoS parameters.

Please cite this article as: B. K. Tripathy, K. S. Sahoo, A. K. Luhach et al., A virtual e
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mated. The jitter is interpreted as the difference in the latency of
a flow between two hosts. It happens due to a variety of reasons,
such as network congestion and changing routes. Fig. 8a and
Fig. 8b depicts the packet loss and jitter during the experiment,
respectively. The average packet loss and jitter value of the pro-
posed scheme are lower than the normal OpenFlow architecture.
6. Conclusion

The Software Defined Networking decouples the network con-
trol functions from the data plane and offers a set of software com-
ponents for flexible and controlled management of networks. In
order to realize the network service offerings, we present a novel
virtual execution platform for the SDN controller that provides per-
formance benefits along with fine-grained modularity and strong
isolation. Two major components, such as Network Packet Sched-
ulers (NPS) and Task Engine (TE) are responsible for executing dif-
ferent network functions on various traffic flows. Additionally, NPS
analyses the functional requirements of the traffic and the con-
troller performance parameters; in turn, it allocates the traffic to
appropriate task nodes for executing necessary network functions.
Finally, the proposed architecture has been evaluated with a case
study, and the pipelined processing of network traffic improves
the throughput 2.16 times more compared to sequential process-
ing. Besides, the architecture also improves the average processing
time and RTT compared to the traditional OpenFlow architecture.
In the future scope of the work, the framework will be tested with
a large number of heterogeneous traffics in varying requirements
and contexts.
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