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Abstract
Climate change brings many changes in a physical environment like plants and leaves. The flowers and plants get affected
by natural climate and local weather extremes. However, the projected increase in the frost event causes sensitivity in
plant reproduction and plant structure vegetation. The timing of growing and reproduction might be an essential tactic
by which plant life can avoid frost. Flowers are more sensitive to hoarfrost than leaves but more sensitive to frost in
most cases. In most cases, frost affects the size of the plant, its growth, and the production of seeds. In this article, we
examined that how frost affects plants and flowers? How it affects the roots and prevents the growth of plants, vegeta-
bles, and fruits? Furthermore, we predicted how the frost will grow and how we should take early precautions to pro-
tect our crops? We presented the convolutional neural network model framework and used the conv1d algorithm to
evaluate one-dimensional data for frost event prediction. Then, as part of our model contribution, we preprocessed the
data set. The results were comparable to four weather stations in the United States. The results showed that our convo-
lutional neural network model configuration is reliable.
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Introduction

Plant disease forecasting is critical in the farming sector.
Agricultural production’s economic growth is dependent
on the product quality they produce, which is dependent
on crop growth and yield. Defining the disease could
also lead to faster treatments that must be applied to
mitigate the effects of significant financial loss. The
diagnosis of different diseases in crops through the
plant’s roots may be complex. Plant disease detection by
hand is a time-consuming process. Charrier et al.1 pre-
sented the seasonal variations in frost hardiness (FH) in
various tissues of new seedlings and established orchard
walnut trees were compared. The electrolyte leaks proce-
dure was used to test FH. Guillaume et al.2 introduced

that if exposure overtakes frost vulnerability, frost dam-
age grows. Therefore, a complex frost resistance simula-
tion utilizing temperatures and photoperiod in interface
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with the stage of development is essential for frost risk
assessment.

Charrier et al.3 suggested an applied eco
physiological-based method for frost risk assessment in
order to address the classical empirical relationships
used for modeling frost hardness. On the basis of this
overall context, it illustrates the numerous environmen-
tal factors (e.g. weather, light, flood, and dryness) that
impact frost vulnerability and frost exposure in the
trees and the management activities (taking, thinning,
curding, sheltering, spraying, irrigation, and fertiliza-
tion). In the article, Suvanto et al.’s4 aim was to investi-
gate whether the temperature of the spruce in Norway
and of Scots Pine in Finland could have an impact on
radial development. In the article, Charrier et al.5 pro-
vided an operating instrument for simulating leaves’
carbohydrates parameters which might forecast frost
hardness with temperature, water contented and early
starch and soluble carbon measurements at an exact
temperature of approximately 3.4�C. It is now to be
studied in different weather and biological processes. In
the article, Arco Molina et al.6 examined the occur-
rence by changing age and bark thickness of frost ring
in trees, with the hypothesis that certain variables can
play a role in physiologic processes that improve the
temperature resistance to freezing, impacting the con-
stantly changing tissue. In the article, Hänninen7 vol-
ume describes the annual period with different
properties, including the timescale of bud explosion
and other phonologic activities, seasonal photosynth-
esis, or frost resistance of the plants. In recent decades,
the annual cycle, especially in the prediction of environ-
mental impacts from climate change, has been used
more and more dynamically in eco-physiological stud-
ies. Bachofen et al.8 presented differences in the hard-
ening cycles between species highlight the importance
of analyzing cold hardiness repeatedly during poten-
tially vulnerable times to predict species range changes
in the context of climate change, between February and
July, on seven occasions.

The rest of the article is arranged as follows. Section
‘‘Literature review’’ addresses the literature work.
Section ‘‘Material’’ presents the material. Section
‘‘Methodology and materials’’ presents the methodol-
ogy. The result and discussion are presented in section
‘‘Results and discussion.’’ Section ‘‘Conclusion’’ pre-
sents the conclusion of the article. Section ‘‘Future
work’’ discusses the future work.

Literature review

According to Salazar-Gutiérrez et al.,9 the purpose of
this analysis was to establish the essential temperatures
of apple flora blooms in various stages of development,
from sleeping to full bloom. Salazar-Gutiérrez et al.9

used the HPFM method for analyzing the damaged
root. Based on time series cold experiments with trees
extracted from four seeds source populations and tree-
planting sites, Martin et al.10 assessed the timing of
cold hardening between Abies sachalinensis popula-
tions. Martin et al.10 measured the timing of cold hard-
ening between A. sachalinensis populations using time
series frozen experiments with trees harvested from
four seed source populations and three planting sites.
The researchers11 focused on longevity diameter at the
breast, height, stem shape, apical supremacy, vegeta-
tive, plant root bud break, and biotic or abiotic dam-
age. Style and Worster12 presented the study on pure
ice sublimating and solid form into an unsaturated
atmosphere. Their findings may be used to predict the
appearance of frost flowers (FFs) in climate models.
Martin et al.10 presented in a laboratory analysis on
the growth and effects of these flowers also on the tem-
perature of an indirect radiometer on new snow at vari-
ous temperatures. Hara et al.11 proposed the seasonal
sea-ice zones and described sea-salt cycles. Bowman
and Deming13 purposed at FFs developed in a frozen
lab from such a pathogen saline solution, as well as FF
produced naturally in the marine (April) and the cen-
tral North Sea. Martin et al.14 differentiated between
direct physiology-related effects on freezing sensitivity
and indirect phenology-driven CO2 and warming
effects. Vitasse et al.’s15 aim in this study is to provide
a summary of the interaction between leaf phenology
and species-specific freezes sensitivity. In their study,
Feng et al.16 presented an freeze injury comprehensive
evaluation index (FICEI) model for the estimation of
the winter crop. Wang et al.17 presented that hyperspec-
tral will quickly gain the spectrum between each pixel in
a picture and track plant condition in a secure way.

Liu et al.18 introduced three adaptive threshold seg-
mentation techniques that have been used to isolate the
field’s plant crops from the soils in this report. Wang
et al.19 in their study used winter wheat as an experi-
ment object to predict the freeze damage stress intensity
of winter wheat developing under natural conditions
quickly and reliably. According to Basler and Körner,20

anthropogenic climate change has a major effect on
physical and biological processes around the world, as
well as on some continents. Hegland et al.21 presented
in the impact of plants and pollinators on climate
change and address how increased temperatures will
affect their interactions. Primack et al.22 proposed a
spring phenology study on 12 taxa: six trees, three
birds, one frog, and two insects. To investigate the
dynamic interactions of temperature, site impacts, and
latitude on phenology, Sujatha et al.23 created a hier-
archical Bayesian model, and compared the perfor-
mance of machine learning and deep learning (DL)
algorithms, which are Random Forest (RF), Support
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Vector Machine (SVM), and Stochastic Gradient
Descent (SGD) to detect the citrus plant disease. Brun-
Laguna et al.24 informed us about the frost in 2013, and
the whole production of peach orchards gets destroyed
due to the frost event. In Diedrichs et al.,25 forecast of
frost event usage machine learning methods is recom-
mended. In Armoniené et al.,26 the RGB Image pro-
cessing Phenotyping Laboratory (LCP Laboratory) has
been developed for low-cost image and analysis. These
protocols can be used to build low-cost imaging systems
for limited research studies and learning. Hanson
et al.27 presented an innovative method to the study of
a plant infection detection system based on leaf classifi-
cation tasks using convolutional neural networks
(CNNs). Sardogan et al.28 presented the method in
order to detect and classify tomato leaf disease using
the CNN model and Learning Vector Quantization
(LVQ) algorithms. A method was introduced in Kumar
and Vani29 used a CNN to detect tomato leaf disease.
Madhulatha and Ramadevi30 used a DL technique to
detect the symptoms of plant diseases at an early stage
and classify plant diseases based on the symptoms. In
Gu et al.,31 the robot can be used to protect field plants,
control corn diseases and plant diseases, and achieve
human–machine separation.

The citrus detecting system developed with a DL
neural network was acceptable for citrus planting in the
natural habitat. Citrus detect mode presented by
Chen et al.32 was based on DL and CNN. Lauguico
et al.33 presented a method for distinguishing three differ-
ent diseases from healthy grape leaves and considered the
system’s confidence value in detecting the classes. In this
study, Convolutional Neural Networks were used to
detect plant illnesses and diagnose them using plant leaf
images. The accuracy rate of the SmallerVGG model was
higher at 87% than the sequential model’s was at 65%.34

In this article, we analyzed the impact of frost on plants
and flowers, how frost affects the roots and decreases the
development of plants, vegetables, and fruits. After that,
we forecast the frost to develop and how we can take steps
to protect our crops. Frost event modeling includes a
complex decision analysis that uses statistical probability
and economists. For frost event prediction, we introduced
the CNN model system and used the conv1d algorithm to
analyze one-dimensional (1D) data. After that, we prepro-
cessed the data set, which is our model contribution. The
findings were analyzed against four weather stations in
the United States. The results showed that our configura-
tion of the CNNmodel is reliable.

Material

Frost effect on plants

Low temperature affects living plants and their struc-
tures. If the temperature goes below zero degrees, then

chilling and freezing damage occurs. Freezing risk often
depends on the conditions of the formation of ice.

Frost damage to plant cells

Frost is an important event because a plant’s tissues get
damage when there are ice crystals, or the temperature
goes below zero degrees. When the temperature goes
below 0 C, there will be crystals around the nucleus.
Tissues that are in secondary growth are usually get
affected by freezing; this can also cause a shrinkage
effect on cells. As intracellular ice is created, exothermic
ice is produced at a low temperature than extra-cellular
ice creation. Lower temperature induces species and
seasonal variations. It interacts with molecular bonds
such as hydrogen, prominent to membrane destruction
and inhibition of macromolecules along with enzymes
and operational proteins. Intracellular ice development
naturally prevents cell death under natural conditions.

Frost damage to plant structure

The ice present on the outside of the plant cell puts a
strain on cell walls and creates osmotic disturbances.
The increased volume of this ice results in frost cracks
in the wood. Once the sap freezes, it increases the stiff-
ness of wood, which can tolerate the weight of ice and
snow. Apo plastic water makes water fluxes when there
are consecutive melting and freezing. Ice expands dur-
ing freezing, and then air bubbles are expelled, making
the xylem embolism. The diameter of the conductor is a
significant element in the sensitivity of xylene. Due to
the freezing event, embolism damage 100% of the water
content in Quercus robur, but only 0% in Pinus sylves-
tris. However, species that are having narrow xylem ele-
ments can also make embolisms after the freezing event.
Hydraulic conductivity is lost due to the low tempera-
ture in xylem conduits. Trees that contain narrow xylem
do not get affected by freezing and grew more energeti-
cally. Therefore, winter embolism is a significant aspect
of controlling tree appearance. Consecutive melting and
freezing can also cause a deficiency in apple trees, and
this phenomenon is well-known as ‘‘frost-fatigue.’’

Table 1 shows that many countries have frost events,
and frost has damaged the plants, crops, and fruits. We
have elaborated on the countries with their frost dam-
age and showing the accuracy of how much they are
predicting the frost event. Some countries are predict-
ing at the accuracy of 93%–95%, but we have done
98.86% to save the crops and plants earlier and before
the time of frost.

Methodology and materials

Data collection and study site

We have got the historical weather data set of the
United States from 10 different meteorological stations.
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The data set is from January 2015 to February 2019,
and the stations are Rocky Mountains, Wasatch,
Alaska, Arkansas, and California. The data contain
several features, but we have taken the soil data to pre-
dict frost events for surface data. We have collected the
whole year’s data, but we predict the frost for some
months, like winter frost or spring frost. After choosing
the parameters now, we must remove the data with
missing values. We concentrate on this research on two
concepts: more than ‘‘0’’ degrees and less than ‘‘0’’
degrees. While the high temperature is over ‘‘0’’
degrees, no frost will exist, although when the tempera-
ture is below null, the frost will occur. Since we use our
model’s supervised process, labels are also necessary,
but there are no labels in the data set; in this case, we
need to describe the labels. Data collection is divided
into data sets 20% for evaluation data and 80% for
training.

Variation of frost event on flowers and leaves

We have collected some pictures of plants that we take
before the frost and after the evaluation. There is a bin-
ary scale for frost damage where 1 is representing that
there is a frost and 0 represents that there is no frost.
In flowers, the frost damages the whole flower, or it
damages the root that results in low production. We
have analyzed frost sensitivity in flowers and leaves
within species that how much frost is affecting the flow-
ers and leaves. In the case of leaves, the frosted damage
ranges between 24�C and below, and the flowers, as
shown in ‘‘Figure 1,’’ have frost damage between 21�C
and below. Reproductive structures, which are sensitive
to frost, are more sensitive than plant structures. In
frost, there are brown patches on the leaves, and these
patches are between the veins of the leaves.

CNN for the prediction of frost event

CNN is an in-depth learning approach that we have
used to predict frost events, and this model is explained
below.

Convolutional layer

The convolutional layers are the core aspect of CNN; it
is the foundation of CNN. These layers perform a con-
volution operation on the input before passing it to the
next layer. Convolution is the unit of measure of the
integral of two positions when they intersect. In
Python, we used the ‘‘conv1d’’ feature, which has sev-
eral attributes as input, such as filtration system, width,
and phase. The kernel scale is between 1 and 2. We
used a Gaussian distribution to set the values of the fil-
tration and biases. Our next layer is the pooling layer,
so the output of the convolution layer will be the input
of the pooling layer. ‘‘Equation (1)’’ shows the formula
for a convolutional layer that we used

Cnv =
Nd + 2Pa � Fdð Þ

Str

+ 1 ð1Þ

where Nd is the dimension of the input file, Pa repre-
sents the padding, Fd is the dimension of the filter, and
Str is for the stride.

Pooling layer

In CNN, the pooling layer is located between the con-
volutional layers. This layer’s role is to reduce the
amount of data processing and variables in the net-
work; this also helps to control over-fitting by reducing
the network size. This layer has two functions: average
pooling and highest pooling, but we have used the
highest pooling with a pool size of 1 1. In the highest
pooling, the filtration will drag through all the input,
selecting only the most important parameters and
removing the remainder. The network will be down-
sampled using this technique. ‘‘Equation (2)’’ depicts
the formula used in the architecture of the pooling
layer

Pol =
Id � Fdð Þ

Str

+ 1 ð2Þ

where Id represents the dimension of pooling layer, Fd

represents the dimension of filter, and Str represents the
stride.

Fully connected layer

A fully connected layer is also known as Multilayer
Perceptron, and each neuron is connected to the previ-
ous layer’s neuron. The network of convolutional layer

Table 1. Frost events predict the accuracy of the crop damage
among the various countries.

Countries Damage of frost event Prediction
accuracy of
frost

Australia Fruits and vineyards 78%
Mexico Crops and plants 95%
South Korea Crops 78%–80%
Argentina Peach orchards 85%
China Wheat 86%
Iran Fruits, vegetables,

and ornamental crops
80%

The United States Leaves, flowers of
subalpine plants, and fruits

93%

Italy Beech forest 87%
Germany Flowers, plants, and

fruits (cherries)
90%–93%
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network is made up of fully connected layers and hid-
den layers. It can be computed by matrix multiplication
with a bias effect. This layer also helps in mapping the
input and output layers.

Activation function

The activation function is a non-linear transformation
applied to the input signal, with the output sent to the
next layer as input of neurons. We used the ReLU and
LReLU functions because the ReLU function does not
always stimulate all neurons at the same time. Its com-
putation is thus faster and more effective than ‘‘tanh’’
and sigmoid functions. Negative values are also
removed from its activation map by setting them to
zero in ReLU. Both ‘‘equation (3)’’ and ‘‘equation (4)’’
describe these functions

f xð Þ= 0 for x\0

x for x ø 0

�
ð3Þ

f xið Þ=
aixi for x\0

xi for x ø 0

�
ð4Þ

‘‘Equation (3)’’ represents the ReLU functions, and
equation (4) represents the LReLU task. In this equa-
tion, both x and xi are the outcomes of convolutional
calculation in the convolution layer. We have used it as
ai a hyper-parameter, and its value is marginal when
training; this factor might too be fine-tuned to develop
the finest performance. ReLU has a fast computation
rate, and it easier to preprocess the data. We have used
ReLU in the convolution layer than having lifted it to
LReLU in the afterward layer. In the end, we have also
adopted the dropout strategy that is used to dodge the
over-fitting in the associated layer, and we have set the
value of dropout to 0.2. Our goal in this model is to
minimize the error so that the accuracy can be
improved, which is defined in ‘‘equation (5)’’ that how
we compute the errors

Figure 1. Different variation of frost event on (a) and (b) flowers ((a) flower before frost and (b) disk and petals of flower affected
by frost) and (c) and (d) leaves ((c) leaves before frost and (d) leaves affected by frost).
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E=
Xi

y= 1

x yð Þ � q yð Þ�� �� ð5Þ

‘‘Equation (6)’’ is the modified kernel function that
we obtained after the estimate

W 0=W � h:
∂J Wð Þ
∂W

ð6Þ

Figure 2 demonstrates the architectural framework
of the CNN model. We have a convolution layer and a
minor number of convolution layers to enable the
model to compute efficiently and accurately. We then
have a convolution layer in the center and the output
for the pooling layer, and the input of an intercon-
nected layer. We still use two completely linked layers;
our kernel scale is 2 2 with a filter size of 32,64,96. The
pooling layer is just 2 in height; our data set involves a
variety of tests, 80% of which are used for training
samples and 20% for testing the study. Afterward, we
obtained our findings completely interconnected in the
form of a diagrams matrix with accuracy.

Results and discussion

In ‘‘Figure 3,’’ X indicates the test data model, where Y
is the test data set. X and Y are two different stations
from which data for testing purposes are obtained. We
have developed a testing model. We obtained data from
a variety of meteorological stations around the United
States. Then, forecasted frost occurrences and plotted
them. In this graph, there are two color lines in which
the orange line is signifying the training data while the
green is labeling the testing data. The occurrence of
hoarfrost will occur if the high-temperature value is less
than ‘‘0’’ degrees.

Moreover, if the high temperature is over ‘‘0’’
degrees, there would be no hoar frost. Figure 4 depicts
the model’s error rate, which was derived by calculating
the difference between actual and estimated data.
‘‘Figure 4’’ displays the inaccuracy ratio that how much
error is there in prediction and how accurate our pre-
diction is. Our prediction is stronger than the less error
rate. The difference between the forecasted and actual

rates was used to compute the error. Because we used
data from different sources, the outcome varies depend-
ing on the data they provided, and thus the number of
iterations we performed. As indicated in Table 2, we
have determined that the setup of our model is now
more practical and efficient. We predicted the accuracy
of the frost event in Figure 7, where the accuracy of
30,000 iterations is 97.6%. It is shown that the behavior
of the data is linear. While the accuracy of 50,000 itera-
tions is 98.6%. By doing the comparative analysis, we
came to know that this CNN model is more feasible
and efficient. While the number of different iterations
used, we can improve the accuracy and predict the early
frost event. Table 1 depicts the problem of frost events

Figure 2. Structural design of CNN model.

Figure 3. Forecast of hoarfrost event using CNN.

Figure 4. CNN model of error rate.

Table 2. The result of the model using different data sources.

Data source 1 2 3 4

Iterations = 50,000
Accuracy 97.3% 98.86% 98.2% 98.6%
Iterations = 30,000
Accuracy 96.7% 97.89% 97.2% 97.6%
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and the resulting damage to plants, crops, fruits, and
other agricultural products in a variety of nations.
With various nations, some studies have obtained an
accuracy of 93%–95%, but we have reached a better
accuracy of 98.6% in virtual data from the United
States.

Using data from January 2018 to December, we have
also forecast the frost occurrence; as seen in ‘‘Figure 5,’’
the orange line defines the testing data, while the green
line is training data, ‘‘Figure 6’’ shows the model’s error
rate on a 1-year data collection.

The accuracy is improving when we have the num-
ber of iterations, shown in Table 2. We have used the
data of different meteorological stations, so the out-
come fluctuates according to the data. By doing the
comparative analysis, we came to know that this model
is more feasible and efficient. The number of iterations
and accuracy is shown in ‘‘Table 2.’’

In ‘‘Figure 7,’’ we have an accuracy graph with
30,000, and in ‘‘Figure 8’’ 50,000 iterations. It shows
that at 30,000 iterations, we have 97.6% accuracy, and
at 50,000 iterations, we have 98.6% accuracy. The pur-
pose of the accuracy graph is to show that our predic-
tion of frost events is at higher accuracy.

Conclusion

Climate change causes several changes in the physical
environment, such as plants and leaves. Natural climate
and local weather extremes have an impact on flowers
and plants. The anticipated increase in frost events,
however, causes sensitivity in plant reproduction and
plant structure vegetation. Plant life’s ability to avoid
frost may be dependent on the timing of its growth and
reproduction. In this article, we have assessed the effect
of frost on plants and flowers, how the frost is dama-
ging the roots, and production of plants, vegetables,
and fruits get reduced. After that, we have to forecast
the frost occurrence to take measures to save our crops.
The forecast of hoar frost events includes complex deci-
sion study that utilizes conditional probability and
economists. For frost event prediction, we implemented
a CNN model method and have used a conv1d

Figure 5. Forecast of frost occurrence via 1-year data.

Figure 6. Inaccuracy rate model of 1-year data set.

Figure 7. Prediction accuracy at 30,000 iterations.

Figure 8. Prediction accuracy at 50,000 iterations.
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algorithm to analyze the 1D data. First, we have pre-
processed the data set, which is our input for the
model. The results have been evaluated against four
meteorological stations in the United States. The
results have shown that our configuration of the CNN
model is efficient.

Future work

In the future, we will create three CNN models: one
layer in one model, two layers in the second model, and
three layers in the third model. We will embed those
models into the structured model and take the average
of three models and test the model. After that, we can
also merge this model with the RESNET model and
build a novel model by merging the two models, which
will result in higher precision of the forecast with less
computation.
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