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Abstract. In this paper, a multiple un-replicated linear functional relationship model is derived where its maximum 

likelihood estimators are obtained as a single root of a nonlinear equation. Its properties of unbiasedness, consistency and 

coefficient of determination were investigated using Taylor approximation and Fisher information matrix. The developed 

model is applied to real estate with housing data from Petaling Jaya, Selangor state. The results obtained show that the 

fitting and predictive abilities of the proposed model are stronger as compared to multiple regression model when applied 

to the training and testing samples respectively. 
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1.0 INTRODUCTION 

Linear regression model has been widely used in studying the relationship between a continuous response 

variable and a set of explanatory variables. However, in many cases, the relationship will become invisible as a 

result of random fluctuations associated between variables. As Fuller (1987) has pointed out, it is unrealistic if an 

explanatory variable can be measured exactly in all situations. Adcock (1877) had first studied the problem using 

functional model where both response and explanatory variables are subject to errors. In 1984, Chan and Mak 

proposed a multivariate linear functional relationship model in which error variances and covariances are 

unnecessarily to be homogenous. In 2002, James proposed a functional generalized linear model to handle 

functional explanatory variables which may be measured at differing time points and sample sizes. Caires and Wyatt 

(2003) introduced a linear functional relationship model with numerical approximation as a solution for its 

maximum likelihood estimation to compare two sets of circular data which are subjected to unobservable errors. 

Chang et al. (2010) generalized the un-replicated linear functional relationship model to multidimensional cases to 

assess the quality of JPEG compressed images.  

Multiple regression (MR) model is commonly used to study and analyze the Malaysian housing market (Yusof 

and Ismail, 2012; Ong and Chang, 2013; Kam et al., 2016). The main limitation of MR model is the statistical and 

inferential problems of multicollinearity which can cause the interpretation of the linear relationship between 

explanatory variables (attributes) and response variable (housing price) becomes nearly impossible (Matignon, 

2007). 

In this paper, we derive a multiple un-replicated linear functional relationship (MPULFR) model where its 

maximum likelihood estimators are obtained as a single root of a nonlinear equation. MPULFR model can overcome 

the limitation of MR model as multicollinearity gives no influence to MPULFR model. We also investigate 

properties of these estimators such as unbiasedness, consistency, and coefficient of determination. The proposed 

model is then applied to Petaling Jaya’s housing market and the results obtained are compared with MR model to 

evaluate the relevance of its application.  
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2.0 MULTIPLE UN-REPLICATED LINEAR FUNCTIONAL RELATIONSHIP 

(MPULFR) MODEL 

Suppose that iY  is an unobservable value of dependent variable and  ipiii XXX ,,, 21 X
 
are p unobservable 

values of independent variables. We defined the MPULFR model as 

 ,n,,, iαY ii 21 βX  (1) 

where   is intercept and   p ,,, 21 β  are coefficients of the linear function. The two corresponding 

random variables iy and  ipiii xxx ,,, 21 x  are observed with errors, i and  ipiii  ,,, 21 δ  such that,  
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Both error vectors are assumed to be mutually independent and normally distributed with the following properties, 

1.   0iE  and   0iE δ , 

2.   0, jiCov  and   0jiCov δδ ,   ji  , 

3.   0, ikiCov   ki,  and 

4.  
11

,0~  NIDi  and  
22

,~ ω0δ NIDi  where 
2

11
  , and 

pI
2

22
ω then 










2221

1211

ωω

ω
ω


 where 

0
1221

ωω . 

 

Result 1: Given the MPULFR model defined by Equations (1) and (2), the maximum likelihood estimators 

of   and k are, 

 βx ˆˆ  y   
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Proof: 

The joint density function of  iipii yxxx ,,,, 21  or equivalently,  ii y,x is 
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where 1 pr ,    
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positive constant then the log-likelihood function is, 
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Hence, differentiate Equation (4) with respect to  , β , 
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X  and  , and equate them to zero will yield,  
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To estimate ̂ , substitute Equation (7) into Equation (5) and get, 
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To estimate β̂ , substitute Equation (7) into Equation (6) and rearrange will get, 
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Then, substitute Equation (9) into Equation (10) and get, 

          



n

i

ii

n

i

i

n

i

i yynyy
1

22

11

2

0ˆˆˆˆˆˆˆ βββxβxβββx    

    0ˆˆˆˆˆ

1

2

1

2

2

11 11

2

1

2

1



















































  
  

n

i

i

p

j

j

p

j

jj

n

i

p

j

jiji

p

j

j

n

i

p

j

jij yyxnxyyx    

To solve for k̂ , 
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Result 2:  The maximum likelihood estimators of  and β are approximate unbiased estimators, 
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Proof: 

Rewrite Equation (11), 
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We used first order of Taylor approximations for the mean of  iikk yx , . 
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where the partial derivatives are evaluated at the mean  iik YX , and the Equation (13) will be valid if and only if the 
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Substitute Equation (14) and Equation (15) into Equation (12) will obtain, 
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Then, Equation (16) becomes, 
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And from Equation (9), βx ˆˆ  y , then, 
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Result 3: Given the MPULFR model, ̂ and β̂  are consistent maximum likelihood estimators of  and β
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Proof: 

The Fisher Information Matrix (FIM) of parameters ̂ and β̂ is used to obtain the variance and covariance of ̂

and β̂ . Thus, the estimated Fisher Information Matrix (FIM) for ̂ and β̂ is as followed, 
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is a pp  matrix are the negative expected values of the second partial derivatives for the log-

likelihood function. The inverse of F is 
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Thus, the variance and covariance of ̂  and β̂
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Similarly, for ̂ , we have 
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Therefore, both ̂  and β̂
 
are consistent estimators of  and β  respectively. 

2.1 Coefficient of Determination 

Consider Equations (1) and (2) and rewrite as  

   iiiiiiii Ey  βxβδβxβX    



where βxβδ iiiii yE   , ni ,,2,1  , is the errors of the model.  

Given ̂  and β̂
 
are maximum likelihood estimators of  and β respectively, by using the idea of least square 

estimation, βx ˆˆˆ
iiii yyyE

i
  , ni ,,2,1  , is the residuals of the model.  

From Equation (8), 
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, simplify using 

Result 1 will get, 
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and the coefficient of determination can be defined as 
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3.0 APPLICATION OF MPULFR MODEL IN REAL ESTATE 

In this study, we utilized a cleansed data of 8741 terraced housing actual transaction records over the period of 

November 2008 to February 2016, from Petaling Jaya city, Selangor. These data were randomly divided into 70% 

training set and 30% testing set. The training set was used to train the model, and the testing set was used to validate 

the performance of the trained models.  

The transacted housing price is regressed on nine explanatory variables using MPULFR and MR models. The 

explanatory variables are lot sizes (m
2
), tenure types (0 for freehold and 1 for leasehold), time to expiry of lease term 

(assuming 200 years for freehold), terraced house types (floor numbers), number of bedrooms, main building sizes 

(m
2
), distances to the nearest shopping mall (km), distances to the nearest supermarket (km), and transaction dates 

(in month) to serve as time adjustor factor. The performance of MPULFR and MR models were compared using 

mean square error (MSE) and coefficient of determination (R
2
) obtained from the training and testing sets. 

Take note that in MPULFR model, a reference housing price from houses with similar attributes is required to 

predict a new house price. This reference housing price is defined as the average house price of h nearest houses 

with similar attributes. In this study, we found that h=4 resulted in the best performance of MPULFR model with 

minimum MSE.  

Table 1 shows the estimated parameters for MPULFR and MR models and their performance measures. The 

small p-values (typically ≤ 0.05) imply that all variables used in this study are significant determinants of the 

housing prices in Petaling Jaya.  

 

TABLE 1. Results obtained from MPULFR Model and MR Model 

Attributes 
MPULFR Model MR Model 

Beta value p-value Beta value p-value 

Constant -3201.36 - -417.13 5.45E-13 

Lot Size 9264.85 0.0000 1037.80 6.5E-241 

Tenure Type -2094.88 0.0000 143.76 2.08E-08 

Time to Expiry of Lease Term 2621.80 0.0000 340.39 2.20E-08 

Terraced House Type 7739.19 0.0000 435.73 4.20E-38 

Number of Bedrooms 8216.49 0.0000 50.76 0.0417 

Main Building Size 6637.34 0.0000 1811.63 2.4E-272 

Distance to Nearest Shopping Mall -9766.77 0.0000 -285.56 1.49E-78 

Distance to Nearest supermarket -14091.05 0.0000 -112.54 3.73E-13 

Transaction Date 3365.03 0.0000 576.33 0.0000 

     



R
2 

0.9999997 0.7171 

MSE of Training Sample 1.84E-07 40856.55 

MSE of Testing Sample 28421.70 38256.35 

 

Both models show that lot sizes and main building sizes have a positive impact on housing prices. Buyers are 

willing to pay more for a larger lot and main building sizes which is also indicated in the studies from Pashardes and 

Savva (2009) and Owusu-ansah (2012). In the study of Ooi et al. (2014), freehold housings are preferable compared 

to leasehold housings. This finding is further supported by MPULFR model but MR model shows a positive 

relationship between housing prices and leasehold housings. The contradiction may due to the existence of 

multicollinearity in MR model and affects the estimation of MR model.  

MPULFR and MR models show that house buyers prefer a house with longer length of residential lease, and they 

willing to pay more to own a house with more bedrooms. It is also observed that the distance to the nearest 

amenities such as shopping mall and supermarket have negative impact to the housing prices in Petaling Jaya. This 

can be interpreted as the house buyers in Petaling Jaya are more willing to invest in the houses that have better 

accessibility and convenience. However, as Rosiers et al. (1996) has pointed out, the impact of the distance to 

nearest amenities on housing prices is ambiguity where these attributes have contributed either repulsion or 

attraction effect. 

It is also seen in Table 1 that the proposed MPULFR model has a better fitting and prediction ability as compared 

to MR model. For the training sample, the MSE and R
2
 for MPULFR model are 1.84E-07 and close to 1.0 

respectively. This is much better than the MR model where its MSE is 40856.55 and R
2
 is 0.7171. Besides, 

MPULFR produces smaller MSE value for testing sample as compared to MR model. This indicates that MPULFR 

model is able to predict the housing prices with higher accuracy. 

4.0 CONCLUDING REMARKS 

In this study, we propose a new functional model for analyzing the relationship between a response variable and 

a set of explanatory variables. The parameters in the proposed MPULFR model were estimated using maximum 

likelihood estimator assuming the ratio of error variances is known. The properties of the estimators such as 

unbiasedness and consistency are investigated using Taylor approximations and Fisher information matrix. The 

coefficient of determination was also developed to assess the performance of the model.  

The proposed MPULFR model was then applied to housing market using actual transaction data from Petaling 

Jaya and the results show that it has stronger fitting and predictive abilities compared to multiple regression model. 

The results from MPULFR are more justifiable and interpretable because its parameters estimations are not affected 

by the multicollinearity of explanatory variables. However, further study is needed to develop the reliability of the 

proposed model by using housing data from different regions. 
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