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Abstract

BACKGROUND: Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several
diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were
compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the
effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis.

RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive
performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol
derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal
component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA) results showed that sonication and absolute
ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic
levels and therefore high DPPH scavenging and 𝜶-glucosidase inhibitory activities.

CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the
performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction
of desired phenolics from plants.
© 2017 Society of Chemical Industry

Keywords: Neptunia oleracea; metabolomics; partial least squares; random forest; phenolics; extraction conditions

INTRODUCTION
High dietary intake of plant-based food is associated with reduced
risk of several chronic diseases, such as cancer, diabetes and cardio-
vascular disease. The protective effects against these diseases are
attributed to the biological activities offered by the phytochemi-
cal constituents present in the plant. The phytochemicals that can
be found in various plants include phenolics, terpenoids, glucosi-
nolates and alkaloids. These constituents have been reported to
possess a wide range of bioactivities. For instance, phenolics are
the major components contributing to the antioxidant capacity of
spinach.1 Glucosinolates and their hydrolysis products present in
cruciferous vegetables exhibit antitumor activity.2 Lupeol, a triter-
pene found in fruits and vegetables, possesses antiinflammatory
and anticancer properties.3 In view of the dependence on the
phytochemical content for the biological activities of plant, there
is interest in studies of the relationship between phytochemicals
present and tested bioactivities. These studies would help identify
the phytochemical markers contributing to the tested activities.

Metabolomics approaches have been widely used to determine
the relationship between phytochemicals and biological activi-
ties. They combine the use of advanced analytical tools, such as
nuclear magnetic resonance (NMR) and mass spectrometry (MS),

with multivariate data analysis (MVDA). One of the regression
models that is commonly used in these approaches is partial least
squares (PLS). The PLS model has been successfully applied to
identify the potential active metabolite corresponding to several
biological activities, including antioxidant,4–7 antiproliferative,8

anti-inflammation,9 𝛼-glucosidase inhibition10 and adenosine
A1 receptor binding11 activities. Recently, a machine learning
method, random forests,12 has drawn increased popularity as an
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application of MVDA tools in omics research. It has been applied
mostly as a classification model for plant13 and biofluid14–16

metabolomics. For regression purposes, it has been used in a
quantitative structure–activity relationship (QSAR) model for
drug design17,18 and for the correlation of transcriptomics and
metabolomics data with potato quality traits.19 However, its
application as a regression model for investigating the rela-
tionship between bioactivity and phytochemical constituent in
metabolomics study has not yet been reported.

Neptunia oleracea is a tropical plant that is consumed as a veg-
etable, especially in Southeast Asia. It is also used to relieve high
fevers and to remove toxic elements from the body.20 The extract
of this plant possesses potential antioxidant and 𝛼-glucosidase
inhibitory properties21 and phenolic compounds have been
suggested to be potential contributors to these bioactivities.22

Although the recovery of bioactive metabolites from plants
depends on the extraction conditions,23,24 the appropriate extrac-
tion conditions for extracting the valuable phenolics from N.
oleracea have not yet been explored. Hence, in order to obtain a
high level of phenolics from this plant, the appropriate extraction
conditions, such as solvent ratio and extraction method, should
be determined.

The objectives of this study were to develop and compare the
performance of PLS and RF regression models based on their
goodness of prediction for the antioxidant and 𝛼-glucosidase inhi-
bition of N. oleracea and to investigate the relationship between
the phenolic constituents and tested bioactivities, hence high-
lighting the metabolites in the phenolic group that contributes
to the bioactivities. Furthermore, different extraction conditions
(solvent ratio and extraction method) were evaluated to identify
suitable conditions that can yield a high level of those metabo-
lites and thereby high bioactivities. The information obtained from
this study may provide insight into the performance of different
MVDA tools and facilitate optimization of the extraction method
and ethanol ratio for preserving the desired phenolic compounds
from plants.

EXPERIMENTAL
Chemicals
Gallic acid, quercetin, Folin–Ciocalteu reagent, sodium carbon-
ate, phosphate buffer, 𝛼-glucosidase enzyme, p-nitrophenyl-𝛼-D-
glucopyranose (PNPG), glycine and 2,2-diphenyl-1-picrylhydrazyl
(DPPH) were purchased from Sigma-Aldrich (Hamburg, Ger-
many). Absolute ethanol, deuterated methanol-d4 (CH3OH-d4),
non-deuterated potassium phosphate monobasic (KH2PO4),
sodium deuterium oxide (NaOD), trimethylsilyl propionic (TSP)
acid-d4 sodium salt and deuterium oxide (D2O) were supplied by
Merck (Darmstadt, Germany).

Plant material
Neptunia oleracea was planted in Universiti Putra Malaysia Agricul-
tural Park by distributing the stems in a pond. The plant was iden-
tified by an in-house botanist (Dr Shamsul Khamis) of the Institute
of Bioscience and a voucher specimen (SK2516/14) was provided.

Sampling and sample preparation
For harvesting and sampling, the plot was divided into six indi-
vidual subplots for biological replications. During the harvesting
period, the leaves were separated from the stems. Immediately,
the leaves were cleaned and stored in a deep freezer at −80 ∘C

overnight, followed by freeze-drying. The drying process was com-
plete when the weight of the leaf remained constant. Dried sam-
ples were ground into a fine powder using a laboratory blender.
The samples were stored in aluminium pouches to avoid exposure
to light and atmospheric moisture.

Extraction
Powdered leaf samples were subjected to two different extractions
methods (sonication and soaking). For each extraction method,
three different ethanol ratios (50%, 80% and absolute) were used.
Thus 36 crude extracts were prepared. Soaking was carried out
by immersing 2 g ground samples in 100 mL solvent in a conical
flask at room temperature for 5 days. The same procedure was
followed for sonication, except that the mixture was subjected
to sonication (at a controlled temperature) in an ultrasonic bath
sonicator (Branson, 141 8510E-MTH model, Danbury, USA) for
1 h. All the mixtures were transferred to Nalgene polypropylene
copolymer centrifuge bottles (NY, USA) and centrifuged at 13
000 rpm for 30 min to separate the supernatant and precipitates.
The collected supernatant was then concentrated using a rotary
evaporator and freeze dried to yield the crude extract. The crude
extracts were stored at 4 ∘C until further analysis.

Total phenolic content (TPC) determination
TPC was determined using Folin–Ciocalteu reagent as previously
reported.21 Samples were prepared at 0.5 mg mL−1 by dissolving
the extracts in DMSO. A total of 20 μL of the samples was mixed
with 100 μL Folin–Ciocalteu reagent in 96-well plates. After 5 min
of incubation, 80 μL of 7.5% sodium carbonate solution was added.
The microplate was then covered and incubated in the dark for
30 min. The absorbance was measured at 765 nm using a SPEC-
TRAmax PLUS microplate reader (Molecular Devices, CA, USA).
Each sample was analyzed in three replicates. A standard curve of
gallic acid was generated for the total phenolic content calcula-
tions, and the results were expressed in micrograms of gallic acid
equivalents per milligram of extract (μg GAE mg−1 extract).

DPPH free radical scavenging assay
The DPPH free radical scavenging assay was performed as previ-
ously described.21 Samples were prepared by dissolving 1 mg of
the extracts in 1 mL DMSO, followed by dilution with the same
solvent to reach final concentrations ranging from 50 to 0.4 μg
mL−1. To 50 μL of test samples loaded into each well, 100 μL DPPH
(5.9 mg 100 mL−1 methanol) was added and mixed well. The mix-
ture was then incubated in the dark for 30 min. The absorbance of
the mixtures was measured at 517 nm using a SPECTRAmax PLUS
microplate reader. The scavenging capacity (SC) was calculated as
%SC= [(Ao −As)/Ao]× 100%, where Ao and As are the absorbance
values of the reagent blank and tested samples, respectively.
Each sample was analyzed in three replicates. The results were
expressed as the IC50 values (μg mL−1), which corresponded to the
sample concentration required to scavenge 50% of the DPPH free
radicals. Quercetin was used as positive control in the assay.

𝜶 -Glucosidase inhibition assay
The 𝛼-glucosidase inhibition assay was conducted according
to an established method, with minor modifications.21 The
𝛼-glucosidase enzyme and PNPG substrate were separately pre-
pared in 50 mmol L−1 phosphate buffer (pH 6.5). The𝛼-glucosidase
enzyme was diluted to obtain a final concentration of 0.02 U in
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Figure 1. Representative 1H NMR spectra of three different ethanol ratios (A) and two-dimensional J-resolved spectra (B) of N. oleracea leaf extracts from
5.0 to 8.0 ppm. Signal assignment for phenolic constituents: 1, vitexin-2-O-rhamnoside; 2, quercetin derivatives; 3, kaempferol derivatives; 4, myricetin
derivatives; 5, catechin; 6, caffeic acid; 7, gallic acid; 8, 3,4-O-dimethylgallic acid.

each well, and the PNPG substrate was prepared at a concentration
of 1 mmol L−1. Samples were prepared in DMSO at a concentra-
tion of 1 mg mL−1 as stock solutions and diluted with 30 mmol L−1

phosphate buffer to reach a final concentration of 5 μg mL−1. The
samples were then diluted twofold using DMSO containing buffer
to obtain a series of concentrations ranging from 5 to 0.04 μg
mL−1. The final concentration of DMSO in each well was 0.5%. To
test the enzyme inhibition by the sample extracts, each well was
loaded with 130 μL of 30 mmol L−1 phosphate buffer, followed by

10 μL sample and 10 μL of the enzyme. The extract was allowed to
interact with the enzyme for 5 min at room temperature before the
reaction was initiated by adding 50 μL of the substrate. The total
volume in each well was 200 μL. After 15 min incubation at room
temperature, the reaction was stopped by adding 50 μL of 2 mol
L−1 glycine (pH 10). The microplate was read with a SPECTRAmax
PLUS spectrophotometer at 405 nm. The percentage of inhibition
was calculated as percent inhibition= [(an − as)/an]× 100%, where
an and as are the absorbance values of the negative control and
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Figure 2. Permutation plots of PLS model describing the R2 and Q2 Y-intercepts for DPPH free radical scavenging (A) and 𝛼-glucosidase inhibitory (B)
activities of N. oleracea.

tested samples, respectively. Each sample was analyzed in three
replicates. The results were expressed as IC50 values (μg mL−1).
Quercetin was used as positive control in the assay.

NMR measurements
Sample preparation and NMR measurements were carried out
as previously described.25 Ten milligrams of crude extract was
mixed with 0.375 mL CH3OH-d4 and 0.375 mL KH2PO4 in D2O
(pH 6.0, containing 0.1% TSP). The mixtures were ultrasonicated
for 15 min and then centrifuged at 13 000 rpm for 10 min to sepa-
rate the supernatant from the residue. Subsequently, 0.6 mL of the

supernatant was transferred to an NMR tube for 1H NMR analysis
at 26 ∘C. A 500 MHz Varian INOVA NMR spectrometer operating at
a frequency of 499.887 MHz was used for the analysis. The acqui-
sition time for each 1H NMR spectrum was 3.54 min, and 64 scans
were performed. Chenomx software v. 5.1 (Edmonton, Canada)
was used to correct the phasing and baselines of all the NMR
spectra. TSP was used as an internal standard, and the spectra
were manually normalized to TSP. Two-dimensional J-resolved
NMR spectra were collected to provide additional support for the
assignment and confirmation of some compounds.

J Sci Food Agric 2018; 98: 240–252 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Figure 3. Scatter plots describing the relationship between observed and predicted 1/IC50 of DPPH free radical scavenging activity for training PLS (A),
testing PLS (B), training RF (C) and testing RF (D). Dashed lines represent the concordance lines y = x.

Identification of phenolic constituents
In our previous study,22 several phenolic compounds were found
to be potential contributors to the antioxidant and 𝛼-glucosidase
inhibitory activities of N. oleracea. These phenolic constituents
included caffeic, gallic and 3,4-O-dimethylgallic acids, vitexin-2-O-
rhamnoside, catechin and derivatives of quercetin, kaempferol
and myricetin. The NMR signals of these phenolics were also
detected in this study. The representative 1H NMR spectra of
N. oleracea extracts from three different ethanol ratios and the
assignment of the phenolics are shown in Fig. 1. The signals of
these identified phenolics were used in the PLS and RF regression
models and other analyses in this study. The information regarding
the characteristic NMR signals of each of the identified phenolics
can refer to the previous report.22

Bucketing of 1H NMR spectra
The 1H NMR spectra were processed, bucketed and converted to
ASCII files using Chenomx software version 6.2. A total of 245
integrated regions were obtained by binning the 𝛿 0.5–10.0 region
with a width of 𝛿 0.04. The water and methanol signals at 𝛿

4.70–4.88 and 𝛿 3.27–3.35, respectively, were excluded.

Development of regression models
PLS model
The PLS model was developed using SIMCA-P software version
13.0 (Umeå, Sweden). The 1H NMR chemical shifts of the identified
phenolics were the X variables, whereas the DPPH scavenging and
𝛼-glucosidase inhibitory activities (1/IC50 values) were the Y vari-
ables. A total of 36 observation datasets were input into the soft-
ware. The scaling method applied was Pareto scaling. The datasets
were randomly separated into two groups, with 50% for both train-
ing and testing. The training dataset was used to develop the
model, whereas the testing dataset was used to validate the model.

RF model
The RF model was developed using the Random Forest Package26

in R software. Unlike the standard classification regression tree
(CRT), which is established by a single decision tree, RF grows
multiple trees, similar to forests. Some observation and variable
data become subsets randomly during trees developing using the
bootstrapping technique. In the case of regression, the average
of the output value from the trees is taken for the prediction.
According to a compromise between the accuracy and processing
time, Oshiro et al.27 recommended the number of trees to be
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Figure 4. Scatter plots describing the relationship between observed and predicted 1/IC50 of 𝛼-glucosidase inhibitory activity for training PLS (A), testing
PLS (B), training RF (C) and testing RF (D). Dashed lines represent the concordance lines y = x.

between 64 and 128. Hence 100 trees were used in this study. The
X and Y variables were the same as in the PLS model.

Pattern recognition analysis
Pattern recognition analysis was used to evaluate the phenolic
variation among N. oleracea leaf extracts obtained using different
extraction methods and ethanol ratios, and hence the effect of the
different extraction conditions. The pattern recognition methods
used in this study were principal component analysis (PCA) and
partial least squares–discriminant analysis (PLS-DA). Both analyses
were performed using SIMCA-P software version 13.0. The 1H
NMR chemical shifts of the identified phenolics were the input X
variables. Pareto scaling method was applied.

Statistical analysis
Minitab software version 17 (Minitab Inc., State College, PA, USA)
and InStat version 2.02 statistical package (GraphPad Software,
San Diego, CA, USA) were used to analyze the TPC, DPPH scav-
enging and 𝛼-glucosidase inhibition assay data. The results were
expressed as the mean± SD of six biological replicates. To deter-
mine the significant differences, analysis of variance (ANOVA) was
applied. Values were considered to differ significantly when the
P-value was less than 0.05.

RESULTS AND DISCUSSION
Performance of regression models
Model validation
Validation of the developed PLS and RF regression models was
performed before they were compared. The PLS model was val-
idated using internal cross-validation by means of cumulative
R2 and Q2, permutation test and external validation. Cumulative
R2 and Q2 indicate goodness of fit and predictive ability of the
model, respectively. The criteria to be a good model include
Q2

> 0.5, R2
>Q2 and the difference between these values being

within the range 0.2–0.3. In this study, autofit of the PLS model
in SIMCA resulted in two components, with R2 and Q2 values of
0.807 and 0.656, respectively. This showed that the PLS model
meets the criteria for validation and prediction performance. The
permutation test is another commonly used validation approach
in metabolomics study. It provides an unbiased assessment of the
validity and degree of overfitting of the PLS model by comparing
the R2 and Q2 of the original model with those of the models where
the Y variable has been permuted randomly. The measure of over-
fitting is indicated by the intercepts of R2 and Q2.28 Figure 2 shows
the permutation test of the current PLS model. The Y-intercepts
of R2 and Q2 were less than 0.3 and 0.05, respectively, further
showing that the model was safe from overfitting.28 External

J Sci Food Agric 2018; 98: 240–252 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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(A)

(B)

Figure 5. Coefficient plot of PLS (A) and variable importance of random forest (B) in contribution to DPPH free radical scavenging activity. Key: DMGA,
3,4-O-dimethylgallic acid; VRham, vitexin-2-O-rhamnoside; MDer, myricetin derivatives; QDer, quercetin derivatives; KDer, kaempferol derivatives.

validation using the testing datasets also showed that the PLS
model was good based on the R2 at 0.61 for both DPPH free radical
scavenging and 𝛼-glucosidase inhibitory activities in the testing
sets (Figs 3B and 4B).

Since the RF takes the randomness out of data in observation
and variables, it yielded not exactly the same (but still similar)
prediction of the DPPH scavenging and 𝛼-glucosidase inhibitory
activities (1/IC50 values) when it was rerun. Thus RF was run 100
times, and the average was taken to predict the two bioactivities.
The RF model was validated using the testing datasets. Validation
of the model yielded a relatively low R2 value of 0.48 for DPPH free
radical scavenging (Fig. 3D) but resulted in high agreement for the
observed 𝛼-glucosidase inhibitory activity (R2 = 0.75) (Fig. 4D). The
smaller value of R2 for DPPH compared to that for 𝛼-glucosidase

inhibitory may be due to the narrow range of values of 1/IC50 of
DPPH (0.11–0.17).

Comparison of PLS and RF models
The PLS and RF models were compared based on their per-
formance to predict the DPPH free radical scavenging and
𝛼-glucosidase inhibitory activities of N. oleracea extracts. The
predictive performance of the model can be revealed by the
relationship between observed and predicted values of the bioac-
tivities. Good agreement between the observed and predicted
bioactivities suggests that the model is reliable in predicting
the bioactivities of new samples based on their 1H NMR data.
Conformity between the observed and predicted bioactivities can
be evaluated based on the root mean square error (RMSE) and R2

wileyonlinelibrary.com/jsfa © 2017 Society of Chemical Industry J Sci Food Agric 2018; 98: 240–252
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(A)

(B)

Figure 6. Coefficient plots of PLS (A) and variable importance of random forest (B) in contribution to 𝛼-glucosidase inhibitory activity. Key: DMGA,
3,4-O-dimethylgallic acid; VRham, vitexin-2-O-rhamnoside; MDer, myricetin derivatives; QDer, quercetin derivatives; KDer, kaempferol derivatives.

values. A lower value of RMSE indicates good conformity, while R2

is the opposite of RMSE.
Figure 3 presents scatter plots describing the relationship

between observed and predicted DPPH free radical scavenging
activity of the PLS and RF models. Figure 3(A, B) shows the results
in the PLS training and testing datasets, respectively. The low
RMSE and high R2 values in all datasets of PLS revealed good con-
formity between the observed and predicted DPPH free radical
scavenging activity. In addition, the similar RMSE and R2 for the
training (R2 = 0.64 and RMSE= 0.007) and testing (R2 = 0.61 and
RMSE= 0.007) datasets in the PLS model showed that this model
exhibited a good generalization and was safe from overfitting, and
hence will generate reliable bioactivity results for the new sam-
ples based on their 1H NMR data. On the other hand, Fig. 3(C, D)
displays the results in the RF training and testing datasets,

respectively. The training dataset of the RF model showed excel-
lent conformity between the observed and predicted DPPH free
radical scavenging activity with the large R2 value (R2 = 0.94).
However, the R2 value decreased drastically in the testing dataset
(R2 = 0.48). The inconsistent results in the training and testing
datasets showed that the RF fitted well only in the training dataset
but fitted poorly in the testing dataset. This indicated the weak
generalization and high tendency of overfitting, and therefore
poor predictive performance of the RF model. The results for the
observed and predicted 𝛼-glucosidase inhibitory activity showed
the same trend as that for the DPPH free radical scavenging
activity (Fig. 4).

These findings showed that the PLS model resulted in better
predictive performance in contrast to the RF model. The excellent
predictive performance of PLS was in good agreement with the

J Sci Food Agric 2018; 98: 240–252 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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(A)

(B)

Figure 7. Score and loading plots of PCA for evaluating effect of different extraction conditions (extraction method and ethanol ratio) on phenolic
constituent levels. Key: N, sonication; K, soaking; DMGA, 3,4-O-dimethylgallic acid; VRham, vitexin-2-O-rhamnoside; MDer, myricetin derivatives; QDer,
quercetin derivatives; KDer, kaempferol derivatives.

previous report regarding the outperformance of PLS as compared
to a nonlinear model: artificial neural network (ANN) in predicting
the antioxidant activity of Pegaga extracts.28 As for RF, although the
model showed a higher tendency of overfitting, its validity was still
relatively high in the agreement between the observed and pre-
dicted 𝛼-glucosidase inhibitory activity (Fig. 4B, C). Thus RF might
be suitable for the prediction of𝛼-glucosidase inhibitory activity of
N. oleracea, but not for the prediction of DPPH free radical scaveng-
ing activity. For classification, Gromski et al.29 explained that RF is
robust against overfitting. However, according to the findings pre-
sented in this work, RF showed a high degree of overfitting in the
case of regression. Therefore, extra care should be taken to use RF
as a regression model, and external cross-validation should be per-
formed to check its degree of overfitting.

Relationship between phenolic constituents and bioactivities
Despite the relatively poorer predictive performance of RF, it was
applied along with PLS to evaluate the relationship between the
identified phenolics and the DPPH free radical scavenging and
𝛼-glucosidase inhibitory activities of N. oleracea. Results obtained

from the two regression tools with different algorithms can
provide more information regarding the contribution of the phe-
nolics towards the studied bioactivities. This can help to identify
the metabolites in the phenolic group that contribute to the
bioactivities. The relationship between the identified phenolics
and studied bioactivities were evaluated based on the regression
coefficient of PLS and the variable importance of RF.

The regression coefficient of the metabolite signals shows how
the phenolics affect the bioactivities. A high regression coef-
ficient (positive or negative) indicates a greater effect on the
bioactivities exhibited by the metabolite and vice versa. The
regression coefficient plot of PLS for DPPH free radical scaveng-
ing is presented in Fig. 5(A). Almost all signals exhibited a positive
regression coefficient for the DPPH free radical scavenging activity.
This shows that they contributed to the DPPH free radical scav-
enging activity of N. oleracea. This is not surprising as phenolics
have been highlighted as potential antioxidants in this plant.22

Among the identified phenolics, quercetin and kaempferol deriva-
tives, vitexin-2-O-rhamnoside and caffeic acid contribute the most
towards the DPPH free radical scavenging activity of N. oleracea.
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The results for the 𝛼-glucosidase inhibitory activity were similar to
those for the DPPH free radical scavenging activity (Fig. 6A).

The variable importance of RF is revealed by the percent increase
in the mean square error (%IncMSE). It is obtained from the aver-
age value of %IncMSE of variable importance from 100 times
running of RF. The higher the value, the more important is the
variable and vice versa. Figure 5(B) shows the variable importance
of the phenolics to the DPPH free radical scavenging activity of N.
oleracea based on the RF model. Similar to the regression coeffi-
cient of PLS, the results of variable importance of RF revealed that
quercetin and kaempferol derivatives, vitexin-2-O-rhamnoside,
and caffeic acid were the most important metabolites among the
identified phenolics regarding the contribution to the DPPH free
radical scavenging activity of N. oleracea. Similar results were also
observed for the 𝛼-glucosidase inhibitory activity (Fig. 6B).

The consistency of the results from PLS and RF strongly sug-
gests that quercetin and kaempferol derivatives, vitexin-2-O-
rhamnoside, and caffeic acid are important phytochemical mark-
ers of the DPPH scavenging and 𝛼-glucosidase inhibitory activities
of N. oleracea. The similar response by these phenolics towards
the two studied bioactivities also showed that they are both
strong DPPH free radical scavengers and potent 𝛼-glucosidase
inhibitors. These results agree with previous results that reported
the potent antioxidant and 𝛼-glucosidase inhibitory activities
of quercetin and kaempferol, as well as their derivatives.30–32

Moreover, based on our previous findings,22 the derivatives of
quercetin and kaempferol that are present in N. oleracea were
quercetin-3-O-arabinoside, quercetin-3-O-rhamnoside, quercetin,
rutin, kaempferol-3-O-glucoside and kaempferol-3-O-rhamnoside.
Furthermore, caffeic acid and vitexin-2-O-rhamnoside have also
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Figure 9. Statistical analysis on total phenolic content (A), DPPH IC50 (B) and 𝛼-glucosidase IC50 (C) of N. oleracea leaf extracts by different extraction
methods and ethanol ratios. The first, upper-case letter refers to the comparison of different solvent ratios for the same extraction method. The second,
lower-case letter refers to the comparison between different extraction methods for the same solvent ratio. Means with different letters are significantly
different (P < 0.05).

been reported to be potential antioxidant and 𝛼-glucosidase
inhibitors.23,33–35 The results of this present study reveal that the
phenolics in N. oleracea are potent antioxidants and 𝛼-glucosidase
inhibitors. In addition, this study also demonstrated that PLS
and RF are not only useful in predicting the bioactivities
but also helpful in highlighting the important phytochemical
markers.

Effect of different extraction conditions (extraction method
and ethanol ratio) on phenolics
The effect of different extraction methods and ethanol ratios
on the phenolic constituent levels was evaluated in order to
identify the extraction conditions for producing N. oleracea
extract with high levels of quercetin and kaempferol derivatives,
vitexin-2-O-rhamnoside and caffeic acid. PCA was used for this
purpose. PCA is an unsupervised MVDA that is used to classify

samples according to their chemical composition.36 The score
plot of PCA provides an understanding of the clustering fea-
tures of the samples, whereas the loading plot highlights the
compounds responsible for the discrimination. As shown by the
score plot in Fig. 7(A), the N. oleracea extracts obtained from the
different extraction methods and ethanol ratios were separated
into three clusters with no notable outliers, where PC1 and PC2
contributed to 62.5% and 19.3% of the variance, respectively.
It can be seen that the separation of the samples was more
attributable to the ethanol ratios than to the extraction methods.
The extracts produced using three different ethanol ratios were
clearly separated into three clusters, but the samples obtained
via the two different extraction methods were not separated from
one another, particularly in the 50% ethanol extracts. However,
the separation between the two extraction methods increased
as the ethanol ratio increased. It can be observed that the two
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extraction methods were slightly separated in the 80% ethanol
extracts, and the separation became more obvious in the absolute
ethanol extracts. Hence these results showed that the different
extraction methods did not give substantial variation in the phe-
nolic content, but varying the ethanol ratio did. The extraction
method only gave variation when a high ethanol ratio was used.

The PCA loading plot (Fig. 7B) reveals that all of the identi-
fied phenolics, except for 3,4-O-dimethylgallic acid, were more
abundant in the absolute ethanol extracts than in the 50% and
80% ethanol extracts. However, these phenolics were not dis-
criminating the absolute ethanol extracts produced by the two
different extraction methods. In order to maximize the separa-
tion between the absolute ethanol extracts obtained via sonica-
tion and soaking, and to reveal the underlying phenolic variation,
PLS-DA, which is a supervised MVDA, was applied. PLS-DA sep-
arates the samples by rotating the PCA components to achieve
the maximum separation. The resulting PLS-DA model was val-
idated by cross-validation through cumulative R2 and Q2. The
model showed high discrimination, with R2 and Q2 values of 0.97
and 0.95, respectively. The small P-value (P = 0.003) obtained via
CV-ANOVA also revealed that the model was statistically signif-
icant. The PLS-DA score plot (Fig. 8A) showed that the absolute
ethanol extracts obtained from the two different extraction meth-
ods were clearly separated into two clusters by PC1, while the load-
ing plot (Fig. 8B) showed that most of the signals of quercetin and
kaempferol derivatives, vitexin-2-O-rhamnoside and caffeic acid
were located at the left side of PC1, corresponding to the position
of absolute ethanol extracts obtained via sonication in the score
plot. This revealed that the sonication was able to extract higher
level of these phenolics than soaking.

PCA together with the PLS-DA results demonstrated that son-
ication combined with absolute ethanol was the most suitable
extraction condition to produce N. oleracea extracts with high lev-
els of valuable phenolics and hence high DPPH scavenging and
𝛼-glucosidase inhibitory activities. This effectiveness may be due
to the combined effect of the ultrasound energy of sonication
and the better ability of absolute ethanol to penetrate the cell
wall of N. oleracea. Statistical analysis of the TPC, DPPH scavenging
and 𝛼-glucosidase inhibitory activities of the different N. oleracea
extracts further confirmed the effectiveness of sonication and
absolute ethanol for producing extracts with high phenolic con-
tent and hence high bioactivities (Fig. 9).

CONCLUSIONS
PLS and RF regression models for the prediction of DPPH free
radical scavenging and 𝛼-glucosidase inhibitory activities of N.
oleracea were validated and compared. The RF model showed
higher tendency of overfitting compared to PLS, especially in
the prediction of DPPH free radical scavenging activity. Both the
regression coefficient from PLS and the variable importance from
RF revealed quercetin and kaempferol derivatives, caffeic acid and
vitexin-2-O-rhamnoside to be significant contributors to the DPPH
scavenging and 𝛼-glucosidase inhibitory activities of N. oleracea.
Among the various extraction methods and ethanol ratios tested,
sonication combined with absolute ethanol was able to extract
the highest amount of these metabolites and hence contributed
to highest DPPH scavenging and 𝛼-glucosidase inhibitory activi-
ties of this plant. This work reveals that the phenolics in N. oleracea
are potent antioxidants and 𝛼-glucosidase inhibitors and that this
plant has great potential for development of phenolic-rich food
products.
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