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Abstract: Ambient assisted technology (AAT), which has the potential to enhance patient care and
productivity and save costs, has emerged as a strategic goal for developing e-healthcare in the future.
However, since the healthcare sensor must be interconnected with other systems at different network
tiers, distant enemies have additional options to attack. Data and resources integrated into the AAT
are vulnerable to security risks that might compromise privacy, integrity, and availability. The gadgets
and network sensor devices are layered with clinical data since they save personal information such
as patients’ names, addresses, and medical histories. Considering the volume of data, it is difficult
to ensure its confidentiality and security. As sensing devices are deployed over a wider region,
protecting the privacy of the collected data becomes more difficult. The current study proposes
a lightweight security mechanism to ensure the data’s confidentiality and integrity of the data in
ambient-assisted technology. In the current study, the data are encrypted by the master node with
adequate residual energy, and the master node is responsible for encrypting the data using the data
aggregation model using a node’s key generated using an exclusive basis system and a Chinese
remainder theorem. The integrity of the data is evaluated using the hash function at each intermediate
node. The current study defines the design model’s layered architecture and layer-wise services. The
model is further analyzed using various evaluation metrics, such as energy consumption, network
delay, network overhead, time in generating hash, tradeoff between encryption and decryption,
and entropy metrics. The model is shown to adequately perform on all measures considered in
the analysis.

Keywords: ambient assistive technology; encryption; Internet of Medical Things; security framework;
residual energy; energy consumption; network lifetime

1. Introduction

The purpose of ambient assisted living (AAL) technology [1] is to make people safer in
their homes by alerting them to potential risks before they occur. Indeed, the goal of AAL is
to foster innovation to keep individuals connected, healthy, active, and satisfied as they age.
AAL covers deploying and applying intelligent technology to help the elderly deal with
challenges and live in their chosen setting for longer. AAL employs information technology
to monitor the health and wellbeing of the elderly, reducing the human resources necessary
to care for them. Elderly and frail people, in particular, may considerably benefit from
the possibilities afforded by assistive technology in their privacy settings, boosting their
health-related protection and preserving overall physiological wellbeing. Ambient assisted
living technology reduces human resources concerning caretakers, making real-time mon-
itoring economically feasible, effective disease handling, deep surveillance, and activity
monitoring technology.
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AAT technology comprises divergent devices ranging from real-time activity sensors
to warehouse management. The security of sensitive data over divergent devices is ex-
ceedingly challenging to monitor and manage. A lightweight data encryption algorithm
that would be deployed in the energy-centric environment is desired to ensure the confi-
dentiality of the data. Although AAT makes our lives safer and health more effective, the
existing issues of expanding data exchange, bandwidth deficiency, high latency, and limited
mobility support of the sensors in technology exacerbate these limitations that impede
the pervasive adoption and implementation of novel technologies [2]. Furthermore, other
difficulties remain unresolved, such as privacy and security concerns, location awareness,
centralized data storage and processing, high data processing delays, network congestion,
and communication costs [3]. The current study focuses on addressing a few of the issues
mentioned above in handling and processing the real-time sensor data of the users. Ac-
cording to a report, the healthcare security industry alone will be worth $8.7 billion by
2023 [4].

Many approaches are utilized to ensure the privacy of data transmitted through
sensor devices within the Internet of Medical Things (IoMT) [5]. Some of the approaches
include public key-based data encryption [6], blockchain technology [7,8], Deep Learning
for encryption [9], and the data aggregation mechanism [10]. As a crucial data processing
method, data aggregation may minimize energy and bandwidth usage while gaining correct
information by integrating message authentication codes with each data packet rather than
sending an auxiliary packet with checksum and error detection codes [11]. Although data
aggregation security mechanisms enhance the confidentiality of the data exchanged across
the edge devices in IoT, attackers can eavesdrop on conversations between organizations,
tamper with the original messages, and forge digital signatures. As a result, the legitimacy
of aggregated data is uncertain, and the cloud center’s decision may be jeopardized. As
a result, privacy-preserving aggregated data have arisen as an essential research topic.
Additionally, healthcare services for customers are at risk of disruption and data loss due to
ransomware attacks on private data operations hosted on public servers [12]. The sensors
in the ambient environment settings are shown in Figure 1.
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The motivation of the current study is the security concern associated with connections
among AAT devices and sensors that must be safe and constantly accessible because of the
sensitive information being handled in ambient assisted living. Furthermore, data integrity,
confidentiality, and availability are critical for medical data exchanged through the ambient
sensors, as well as base stations in the hospital’s network. Despite the new technologies
providing opportunities for AAT’s advancement and growth, they pose various security
and privacy concerns that may impair the deployment and use of the ambient assisted
living ecosystem [13]. These underlying challenges have largely motivated the current
study’s design of the lightweight security model. The contributions of the current study
are listed as follows.

• Reviewing various existing models ensures the confidentiality of the data in the AAT
and IoMT environments.

• An energy-centric sensor device selection mechanism to identify the local and global
host device that performs data encryption.

• Ensuring the confidentiality of the data being exchanged over the sensor devices in
AAT technology.

• Evaluating the security model concerning various aspects of the performances, such
as the throughput and latency, and confidentiality metrics, such as correlation and
entropy of the encrypted data.

• Finally, presenting the open challenges in this field and future motivational trends.

The rest of the sections in the manuscript are organized on the following grounds.
Section 2 presents various contemporary encryption techniques used in the IoT environment
to maintain the privacy of the data being exchanged. Section 3 presents the background
of the study, where the layered architecture and the services of each layer in the proposed
software-driven security model are discussed, and also the metrics used in evaluating the
performance. Section 4 presents the proposed encryption, key generation, and management
methodology. Section 5 presents the experimental results and the statistical analysis with
other contemporary models. Finally, Section 6 presents the study’s conclusion and future
research directions.

2. Literature Review

Although there are various interpretations of the ambient assisted living environment,
a fundamental technological idea is to link sensors, smart wearable devices, and health-
care management applications over the internet to provide remote monitoring, access,
and control of the environment. As a result, ambient environments seek to identify and
offer personalized services to citizens who interact with and collaborate with the environ-
ment. An ambient assisted environment is also automated, using the Internet of Things
(IoT) [14] framework, capable of responding to the needs of its occupants, offering comfort
and wellbeing.

Several designs have been developed to bring security and privacy characteristics to
IoT network operating situations. Hamed et al. [15] suggested a safe artificial intelligence
(AI)-based framework for protecting an IoT edge layer. The Cyber Kill Chain model was
used in this research to identify and categorize the life cycle of any threat. The many types
of threats and how AI engines deal with them at the edge level were also assessed. A new
safe IoT paradigm for managing supply chain risk was introduced [16]. Machine learning
algorithms, cryptographic hardware monitoring, and distributed system coordination all as-
sist in the architecture’s security. Alam et al. [17] proposed a layered architecture for the IoT
to promote secure accessibility to IoT-enabled services and ensure compatibility of security
characteristics across various administrative domains. Using a semantically enhanced over-
lay, they connected the various layers and ensured the platform’s security by employing
ontology-based reasoning and semantic rules. Semantic criteria were designed to ensure
access authorization, as this study is solely concerned with the security requirements of
access control problems. Wang et al. [18] proposed a technique for anonymous aggregation
in public cloud computing utilizing fog. Bilinear pairings and the Castagnos-Laguillaumie
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cryptosystem can be used to execute the calculation over ciphertexts. Data privacy between
the information producer and the aggregator and data compression between the aggregator
and the receiver, or base station, were two key motivations for these information-based
methods [19]. However, extensive computing efforts are required for the suggested ag-
gregation model using the Castagnos-Laguillaumie cryptosystem. Zhao et al. [20] have
suggested an effective WBAN authentication scheme without bilinear pairing operations.
Elliptic-Curve Cryptography (ECC) was used for identity-based authentication for wire-
less body area networks (WBAN). ID-based communication does not need a certificate.
Zhao’s approach is unsafe because attackers may track the user using the pseudo identity’s
constant value.

The recent study by Loretta and Kavitha [21] integrated the best clustering technique
into the model to protect data privacy. This protocol improved energy-efficient and data-
privacy routing across the heterogeneous network by using multi-hop transmission and
clustering to reduce sensor node energy consumption and increase network lifespan. The
simulations showed that the suggested technique improved data security while considering
the network lifespan and computing time. Blockchain technology is the other most widely
used technology to ensure the confidentiality of the data in the IoT. The blockchain-based
privacy-preserving approach employs the blockchain technology concept. The basic con-
cept is a decentralized, distributed ledger containing encrypted data chunks. The data
block in the blockchain is made up of a sequence of transactions that most network mem-
bers have approved. For unique identification, the blocks are chronologically connected
using the prior hash value for the next consecutive block. The associated hash code of the
block may be used to locate the block in the blockchain. These connected blocks must be
distributed and copied in the peer-to-peer network. The distributed consensus technique
inserts transactions into new blocks and spreads consensus (evidence) throughout the
network. Creating blocks in the network is carried out by distinct nodes, notably miners.

The current study primarily focuses on medical device data and healthcare application
computations over the edge devices. High-risk patients with post-diagnosis side effects
need prompt decisions from healthcare systems. Due to the considerable computing and
storage resources, numerous researchers use the cloud layer for computations. Latency
in sending Cloud findings to devices hinders diagnosis for people who need immediate
decisions. Medical information processing and information interchange in healthcare
services increase Cloud-IoT channel communication overhead. Data analysis at the edge
layer, including the sink, reduces latency, bandwidth, and network delay to allow real-
time applications. Multi-Access Edge Computing (MAEC) [22] also prevents network
bottlenecks and congestion on the lengthy transmission channel between the interface layer
and the data processing layer.

3. Background

The AAT network’s installed sensors would use the IoMT framework to collect and
share data. In a real-time setting, people and patients are constantly watched, with informa-
tion flowing back and forth between sensor nodes and a central hub. The network model
distributes roles and services across its tiers to make processing data more manageable. In
Figure 2, we see the three levels of the network and their respective roles: the perception
layer, the interface layer, and the data processing layer.

Perception Layer: The perception layer is the bottommost layer of the proposed model,
which generally comprises the sensor devices deployed in the AAL environment that range
from wearable sensors to sensors deployed at smart homes for real-time monitoring of the
patients and the citizens. This layer offers services such as data acquisition from sensor
devices, quantization, and categorical data handling. The raw data is acquired from the
sensors and processed as perception data.

Interface Layer: The interface layer is the intermediate layer in the proposed framework,
where the interface layer deals with multiple network technologies such as Bluetooth,
Wi-fi, ZigBee, and Z-wave technologies used in exchanging data. This layer offers services
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such as data routing between the base station and the sensor devices and error handling,
and other crucial services, such as data compression and encryption, are carried out in
this layer.
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Data Processing Layer: The data processing layer is the topmost layer that generally
focuses on building a model that can analyze the data and notify the user during abnor-
mal situations. The layer comprises the database to maintain the sensor data, and the
database would be the source of input for the model to analyze the data. Furthermore,
the abnormal medical parameters would trigger the notification to the patients about their
health condition.

All the encryption operations will occur in the interface layer of the network architec-
ture discussed in the current study. The proposed software-defined network would be part
of the interface layer of the proposed layered framework. The current study is limited to
security-related services of the interface layer.

3.1. Metrics for Evaluation

Various parameters are considered in evaluating the privacy and confidentiality-
related aspects of the data exchanges over the sensor nodes. Some metrics include network
delay, computational time, energy consumption, and system reliability. The mathematical
equations used in evaluating these metrics are discussed as follows.

Network Delay: The network delay for Internet of Things applications consists of
round-trip delays, which include the delay between the slave node Sn and the correspond-
ing sink Sk and the corresponding master node Mn. The notation Sn ↔ Mn denotes the
round-trip time between the slave node and the master node, and similarly, the notation
Mn ↔ Sk designates the round-trip time between the sink and the master. Many factors,
including noise, inference, and interruptions in the wireless network, can disrupt links to
communication throughout task offloading and downloading. As a result, the offloading
judgment approach considers dynamic changes in network circumstances during offload-
ing [23,24]. The formula for the network delay is calculated based on the delays incurred
by all the other factors, as discussed above. The network delay at master nodes is shown in
Equation (1), and the delay at the sink is measured as shown in Equation (2) [25].

Nd(Mn) = {α× (Mn) + β× (Mn)} × C + 〈Sn ↔ Mn〉log2

(
1 +

Sp

Cn

)
(1)
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Nd(Sk) = {β× (Sk)} × C + 〈Mn ↔ Sk〉log2

(
1 +

Sp

Cn

)
(2)

From the above equations, the variables α and β represent the download and up-
load tasks, respectively. The notation C designates the total channel capacity, including
the delays of all upload and download tasks. The notation Sp designates the network’s
signal power measured in watts and the notation Cn designates the noise power in the
corresponding channel, which is considered to be 15 dB across the experimentation.

Computational time: The computational time is crucial in assessing the time consumed
at the master nodes for aggregating the data they have received from the slave nodes. It is
approximated as the sum of the queuing delay (qd), processing delay (pd), and the delay
associated with download and upload designated by ndl and nul , respectively. This is gen-
erally desired to be low for a network with better performance. The computation delay and
the network delay are hard to normalize. Hence, the delay is calculated as a combination of
the computational and network delays. The formula for an overall computational time at
the master node and sink is shown in Equations (3) and (4), respectively.

Ct(Mn) = {ndl + qd + pd + nul}+ Nd(Mn) (3)

Ct(Mn) = {ndl + qd + pd}+ Nd(Sk) (4)

Energy consumption: The other most significant parameter considered in evaluating the
network model is the computational delay, which is generally desired at a minimum [26].
The formulas for the computational delay at the master node and sink are presented in
Equations (5) and (6), respectively [27]. The overall computational delay at the network is
shown in Equation (7).

Ct(Mn) = tsn ×
{

Bl × Da f

}
× amp× d2 (5)

Ct(Sk) = tmn ×
{

Bl × Da f

}
× amp× d4 (6)

Ct(Overall) = Ct(Mn) + Ct(Sk) (7)

From the above Equations, the notation Ct designates the computational time for
the exchange of Bl length of bits in the network. The notation Da f designates the data
aggregation factor, and the notation amp designates the amplifier to retain the signal-to-
noise ratio in the communication. The notation tsn designates the sum of all active slave
nodes in the network and tmn designates the sum of all master nodes in the network that
are responsible for the exchange of the data in the associated cohort.

3.2. Implementation Environment

The proposed model was simulated in a Network Simulator 2 platform. A 100× 100-m
elevation grid was the platform for analyzing the proposed scenario. In this situation,
transmissions might be detected up to a distance of 30 m. The model was built using a
single repository that was run 2000 times. The security model was implemented through the
cryptography library using the Fernet package. The network simulation and the encryption
of the sensor data were performed as two independent processes, and the cumulative
performance was evaluated. Table 1 presents the specifics of the simulation environment.

Table 1. Specifications of the experimental environment.

Environment Details Specifications

Simulation area 100 m × 100 m
Location of sink 50 m × 50 m

Total sinks in the network 1
Total nodes in the network 100
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Table 1. Cont.

Environment Details Specifications

Nature of nodes Stationary
The energy at node (round 0) 100 mW

Message length (slave to master) 2800-bits
Message length (master to sink) 6400-bits
Number of rounds of simulation 2000

Limit of transmission distance 30 m
Intra-cluster routing Single Hop

Radio range 100 m
Traffic category Multicast constant bit ratio

Protocol IEEE 802.11

3.3. Network Model

The proposed network consists of 100 nodes with divergent residual energy at initial
deployment, and the nodes are grouped as a cohort that relies on the distance and likelihood
of the nodes. All of the nodes in the cohort would rely on the node with the highest residual
energy at the current round, named the master node, and the rest of the cohort nodes
are considered slaves. The slaves send the sensor data to the corresponding master, and
the master aggregates the data to ensure the data’s confidentiality. Every cohort in the
network will have a master node, and all the master nodes are directly connected to the
sink. The sink has a business model that performs data analytics and notifies users of any
abnormality. The master node in the cohort is updated in successive rounds based on the
available resources and other underlying factors. The grouping of network nodes and
identification of the master nodes are discussed in the current sub-section. The proposed
software-driven network model is shown in Figure 3.
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3.3.1. Grouping the Network Nodes

The node grouping is carried out to form a cohort of nodes in the network, where each
cohort does have a master node that is responsible for exchanging the data. The process of
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forming the cohort of nodes is carried out based on the distance and the delay timer [28].
The cluster formation’s objective function is based on Equations (8) and (9).

O f = tdmin + (tdmax − tdmin)× γ×
(

ed
re

)
+ tdrand (8)

ed =

√
(y2 − y1)

2 + (x2 − x1)
2 (9)

From the above equation, the notations tdmax and tdmin designate the maximum
and minimum time delay associated with the nodes. The notation γ designates the non-
dimensional energy and distance metrics. The notation ed designates the Euclidean distance
approach and the notation re designates the value of the residual energy. The tdrand is a
random delay timer value. The value of the random delay duration is selected to avoid
several sensors simultaneously becoming the master.

3.3.2. Assessing the Residual Energy

The residual energy at the node is one of the crucial deciding factors for grouping the
nodes, and the Master is partly determined by the amount of residual energy. The nodes are
initialized with divergent residual energy, and the available residual energy is updated in
each round to the node with the highest residual energy and the node at a feasible distance
to the rest of the nodes in the cohort as the master. The residual energy is updated based
on the formula shown in Equation (10).

re = reint − {(χ× d) + (En × d× ed)} (10)

From the above equation, the notation reint designates the initial residual energy, and
the notation d designates the number of data packets. The notation χ designates the implied
energy and En designates the energy needed to push the data packets to the next node; i.e.,
when the node is master, the energy needed to push from the master to the sink, and when
the node is slave, the energy needed to push the data from the slave to the master.

3.3.3. Assessing the Cohort Fitness

The group’s fitness is assessed to retain it in the next consecutive rounds. In case
of fitness values less than 0.5, the nodes in the cohort are merged into the neighboring
cohort based on the distance measured. The cohort’s fitness c f is assessed in the following
Equation (11).

c f =
1

∑tc
i ∑tn

j

√
|nre −mre |

(11)

From the above equation, the notations tc and tn designate the count of cohorts and the
count of nodes in the cohort, respectively. The notation nre denotes the residual energy at the
corresponding node, and the mre is the mean residual energy at the corresponding cohort.

4. Proposed Methodology

The data obtained by the cluster head is accumulatively encrypted through a lightweight
encryption process, guaranteeing the confidentiality of the data exchanged between the
master and the sink. Although the majority of data utilized in data communication applica-
tions are massive, only a tiny fraction of it is valuable in WSNs. WSNs commonly employ
symmetric-key encryption techniques, whereby a large key size encrypts a substantial data
block. The efficacy and durability of the encryption protocol are contingent upon the larger
pairwise keys mutually shared by the entities involved in data transmission. The data
accumulation procedure encrypts the data acquired at the master using the path-oriented
encryption approach. The path-oriented encryption approach necessitates lower keys for
encryption and resource efficiency, requiring less computing time and effort than other
contemporary encryption methods. The suggested data accumulative model encrypts
data using a series of arithmetic operations and numerous keys, ensuring the model’s
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confidentiality. The keys used for data encryption are randomly created, and the size of a
key is proportionate to the data size. The proposed model is a lightweight encryption with
fewer computations and rounds than conventional encryption models.

On the other hand, the key generation process is computationally feasible using the
Chinese reminder theorem with simple modulus operation. The notations used in the
current section are enclosed in Table 2. The smart security framework for the sensor data is
shown in Figure 4. The notations used in the current section are shown in Table 2.

Table 2. List of notations used in the current section.

Notation Description

Adata Actual Data
HVdata The hash value of the data

DT( fdA) Data transfer from the node A
DT( fdB) Data transfer from the node B
DT( fdC) Data transfer from the node C
DT( fdD) Data transfer from the node D
Acc(A) Accumulated data at node A
Acc(B) Accumulated data at node B
Acc(C) Accumulated data at node C

E_Accdata Encrypted Accumulated data
kA,B Key to transfer the data from A to B
kA,C Key to transfer the data from A to C
kA,D Key to transfer the data from A to D
kB,C Key to transfer the data from B to C
kB,D Key to transfer the data from B to D
kC,D Key to transfer the data from C to D
Ckey Cohort’s key
Im Index of Master nodes

pkey Private key
ckey Cohort’s key
mkey Master node’s key
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4.1. Encryption and Decryption Process

The security model’s operation may be better understood by utilizing an example
with four nodes, notably A, B, C, and D. In this scenario, it is presumed that node A is the
origin of the data that transmits the data to node D. The nodes B and C are considered
intermediate between the nodes A and D. The acquisition of sender data is facilitated by
linking nodes, whereby each node shares a confidential key employed in the encryption
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process. The mathematical modeling for secured data communication can be understood
through Equations (12) to (16).

DT( fdA) = Adata × HVdata +
{

k(A,B) + k(A,C) + k(A,D)

}
(12)

DT( fdB) = DT( fdA)− {kA,B}+ {kB,C + kC,D} (13)

DT( fdC) = DT( fdB)− {kA,C + kB,C}+ {kC,D} (14)

DT( fdD) = DT( fdC)− {kA,D + kB,D + kC,D} (15)

Adata =
DT( fdD)

HVdata
(16)

As can be observed from the above equations, a basic arithmetic operation sequence
is used for the full encryption and decryption. Whenever the data reaches the node
downstream, the upstream key list is updated with the corresponding key. The sink would
use the key at the final intermediate node to decrypt the cipher text. The keys for data
encryption are generated using a key generator. The data hash is examined to confirm the
data’s integrity. The predicted hash value is multiplied before transmitting the data. The
same hash value is utilized at the receiving end to divide the generated data so that the
data’s integrity may be correctly assessed. Assume the data have been altered since they
cannot be decrypted due to the same hash value being multiplied by the original data.

4.2. Data Accumulation Process

The data accumulation is carried out at each node, the data of the current node are
appended to the data from the upstream, and then, on appending the data to the received
data, the data are transmitted to the node downstream. The recent data at the current
sensor node are fed as the data packet and the input for the has function, and then, the
assessed has value is appended to the data packet. Then, the data packet is encrypted using
the key at the sensor device. The calculated hash value is used to assess the integrity of
the data being exchanged. The data encryption process is shown in Figure 5 for a better
understanding of the process. Accumulative data encryption is applied to data retrieved
from numerous sources linked to the node. Equations (17) to (20) show the corresponding
formulas for the data accumulation process.

Acc(A) = Adata × HVdata +
{

A}+
{

k(A,B) + k(A,C) + k(A,D)

}
(17)

Acc(B) = {Acc(A) + B} − {kA,B}+ {kB,C + kC,D} (18)

Acc(C) = {Acc(A) + Acc(B) + C} − {kA,C + kB,C}+ {kC,D} (19)

Adata =
Acc(A) + Acc(B) + Acc(C)

HVdata
(20)

The lightweight encryption mechanism is complex enough to assure data confiden-
tiality. The activities are conducted at the cluster head to guarantee that the encryption
process does not overburden the other linked sensor nodes, which would result in a more
sustainable and robust network.
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4.3. Key Generation and Management

The key generation is one of the significant phases of the proposed security model,
where the key’s strength decides the framework’s robustness in ensuring the confidentiality
of the information being exchanged. The proposed key model relies on the Exclusive Basis
System (EBS) and Chinese remainder theorem (CRT) [29]. The CRT is extensively used in
cryptosystems as it deals with larger integers to address the modular congruence relations
with different moduli. A 1024-bit key is generated using the proposed model used in the
encryption process. The nodes in the proposed model will have k keys out of the total tk
number of keys, where {k < tk} at all the instances. In all the instances, the cohort’s key is
determined as shown in Equation (21).

ckey = (E_Accdata mod Im) + pkey (21)

The accumulated data are encrypted using the CRT across multiple keys, as shown in
Equation (22).

E_Accdata = key1 mod nkey_1
E_Accdata = key2 mod nkey_2
E_Accdata = key3 mod nkey_3

.

.
E_Accdata = keyk mod nkey_k


(22)

The corresponding keys at each node are recognized as
{

nkey_1, nkey_2, nkey_3 . . . nkey_k

}
used in encrypting the accumulated data at the node. CRT only holds when the nkey_i,
where {i = 1, 2 . . . , k}, are mutually co-prime. The node key is generated, as shown in
Equation (23).

nkey_i = ckey mkey − pkey (23)

The keys are generated for each round of communication, which would result in
computational overhead. However, data security is strongly desired in domains such as
healthcare that work with sensitive data. The proposed key generation model is robust
to the topological changes, which is a much-desired feature concerning the lifetime of the
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sensor nodes. The flow chart of the proposed security model is presented in Figure 6, and
the corresponding algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm of Proposed Security Model
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Input: 𝑛   represents the number of nodes, 𝑟  represents the number of rounds, 𝑑 
represents data packets, 𝑘  represents the keys, 𝜒   denotes the implied energy, 𝐸 denotes the energy needed to push the data, 𝑟  Residual Energy, 𝑡𝑑ௗ  denotes the 
random delay timer, 𝑒ௗ  represents the distance measured, 𝑡𝑑  denotes the 
minimum time delay, 𝑡𝑑௫  denotes the maximum time delay, 𝑐  denotes cohort 
fitness. 
Output: Ciphertext to transfer. 
 Begin     
  Update 𝑟, 𝑒ௗ    
 Set 𝑥 = 0    
 While (𝑥 <  𝑟) do    
  Flood the Active_Node_list, 𝑟, 𝑒ௗ  
 Procedure Cohort (Active_Node_list, 𝑟, 𝑒ௗ)  
  Create New_Cohort(𝑡𝑑, 𝑡𝑑௫, 𝑡𝑑ௗ) 
 Assess 𝑟(𝜒 , 𝐸 , 𝑒ௗ, 𝑑 ) //At each node. 
 Select Master()    
 Assess cohort fitness()   
 return 𝑐   
 End procedure    
 Procedure Key Generation (𝑝, 𝑀, 𝑑𝑎𝑡𝑎)  
  Assess Cohort Key   
 Apply CRT for key selection  
 Return key    
 End procedure    
 Procedure Encryption (Key, data)   
  Calculate Hash()     
 Append Hash_Value   
 Append Data_from_Upstream  
 Encrypt(𝑑𝑎𝑡𝑎, 𝑁𝑜𝑑𝑒௬)   
 return ciphertext    
 End procedure    
 End     
 End      

4.4. Integration of the Proposed Network Model in AAL

The proposed security model could be deployed in the distributed environment using
sensor network technology. The master node is identified based on the available residual
energy, and the master node is responsible for encrypting the data and assessing the
hash value. The proposed security model is feasible to implement in ambient assisted
technology. The sensor devices, controllers, Rf-id readers, and wearable technologies are
connected to the trans-receiver, and the data from the transceivers are transferred in an
encrypted format. The transceivers with better residual energy in the sensor technology
are assumed to be the master, responsible for transferring the data in the secured format.
Generally, the transceivers are heterogeneous concerning the applications in which they
are deployed. In the current study, for performance analysis, the transceiver nodes are
considered homogeneous nodes with divergent residual energy levels.
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5. Results and Discussion

The efficiency of the proposed encryption model is analyzed concerning the various
standard metrics such as network delay, computation delay, and energy consumption.
The obtained experimental values concerning the metrics are analyzed across the other
contemporary models in the current section of the paper. The experiment is performed for
2000 rounds, and the delay is assessed in milliseconds. Initially, the time delay is measured
across the number of rounds of the network life cycle, and the corresponding graph is
shown in Figure 7.
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It can be observed from the above graph that the energy consumption has linearly
increased over the rounds, as in each round, more data packets arrive from the various
sources, resulting in delays at both the network and computational levels. It was clear
from the experimental results that the delay incurred by the network is comparatively
higher than the computational delay. The model was further evaluated concerning energy
consumption over multiple rounds. The corresponding graph is shown in Figure 8.

Sensors 2023, 23, 6564 15 of 21 
 

 

 
Figure 7. Graph portrays the time delay associated with the proposed security framework. 

It can be observed from the above graph that the energy consumption has linearly 
increased over the rounds, as in each round, more data packets arrive from the various 
sources, resulting in delays at both the network and computational levels. It was clear 
from the experimental results that the delay incurred by the network is comparatively 
higher than the computational delay. The model was further evaluated concerning energy 
consumption over multiple rounds. The corresponding graph is shown in Figure 8.  

 
Figure 8. Graph portrays the energy consumption associated with the proposed security framework. 

The energy consumption increases over the rounds, as the number of data packets 
increases over the rounds, resulting in more energy consumption. The network 
transmission consumes energy that would linearly increase with the number of rounds. It 
can be observed from the graph that the energy is not fully utilized after 2000 rounds, 
which makes it evident about the network’s sustainability. The performance of the secure 
model framework is further analyzed concerning the time for generation of the hash and 
the level of security. The robustness of the security mechanism in the proposed model is 
analyzed with other approaches such as Point-on-Curve-based Fowler–Noll–Vo (PoC-
FNV), RACE Integrity Primitives Evaluation Message Digest (RIPEMD), Message Digest 
Algorithm 5 (MD5), Spooky Hash, and Fowler–Noll–Vo (FNV) [30,31]. The corresponding 
graph for time consumption to generate the graph is shown in Figure 9. 

Figure 8. Graph portrays the energy consumption associated with the proposed security framework.

The energy consumption increases over the rounds, as the number of data packets
increases over the rounds, resulting in more energy consumption. The network transmis-
sion consumes energy that would linearly increase with the number of rounds. It can be
observed from the graph that the energy is not fully utilized after 2000 rounds, which
makes it evident about the network’s sustainability. The performance of the secure model
framework is further analyzed concerning the time for generation of the hash and the level
of security. The robustness of the security mechanism in the proposed model is analyzed
with other approaches such as Point-on-Curve-based Fowler–Noll–Vo (PoC-FNV), RACE
Integrity Primitives Evaluation Message Digest (RIPEMD), Message Digest Algorithm 5
(MD5), Spooky Hash, and Fowler–Noll–Vo (FNV) [30,31]. The corresponding graph for
time consumption to generate the graph is shown in Figure 9.
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It can be observed from the above graph that the time taken to generate the hash value
used in encrypting the data is comparatively less than the other approaches considered
for analysis. The efficiency of the software-driven secure framework is further evaluated
concerning the encryption time and the decryption time consumed concerning the number
of data packets in the queue. The time measures are presented in Figure 10.
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From the above graph, it can be observed that the decryption time is slightly higher
than the encryption time. In the current study, the encryption and decryption times are
calculated by considering the network delay at the corresponding round in the network.
To better understand the procedure, the notation identifies the total time delay ttd for
encryption or decryption operation is assessed using the formula shown in Equation (24).

ttd = Ndy + Ody (24)

From the above equation, the notation Ndy denotes the network delay and Ody denotes
the operation delay, where the operation refers to encryption or decryption. The data size
is 6400 bits in the current study, which is constant throughout the evaluation. The data
is divided into multiple virtual blocks based on the size of the key for ease of evaluation,
as shown in Equation (25). The number of cycles per block is assessed using the formula
shown in Equation (26).

Number o f Blocks =
Data size
Key size

(25)

Cycles per Block =
Cycles per second

Speed
(26)

The cycles per second depend on the clock frequency of the processor. Hence, this
largely depends on the machine on which the model is executed. The operation time is
assessed using the formula shown in Equation (27).

Ody = Number o f Blocks× Cycles per Block (27)

The performance of the encryption model is further analyzed concerning the entropy
value of the encrypted text. The higher the degree of entropy, the greater the system’s
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complexity. In other words, the information entropy effectively measures the system. The
formula for information entropy is measured as shown in Equation (28) [32].

e(d) = ∑
d

p(d)log2
1

p(d)
(28)

The entropy is measured for data of various sizes. The actual size of data considered
in exchanging the data is 6400 bits, entropy value is assessed for variable-size data blocks,
and the same is shown in Figure 11.
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The figure shows that analyzing the text would be more difficult with more bits in the
original data. The higher the entropy value, the more the randomness in the data and the
more complex the cipher text. It is desired to have a higher entropy value, to make sure
the encryption model is robust. The increase in the data size would significantly impact
the entropy value, with a higher number of bits in the payload, which would generate a
relatively larger cipher text that would have a better entropy value [33]. The entropy of
the plain data and the corresponding cipher text is analyzed at multiple rounds for better
comprehension of the study. The corresponding graph for entropy measure is shown in
Figure 12.

As can be observed from the graph, the size of the data is retained to be uniform to
maintain the consistency of data throughout the analysis; the entropy of the cipher text
is experienced to be high at higher rounds, due to the involvement of multiple nodes in
communication and the resultant aggregated data. The encryption model would process
the data bits received from the upstream, where the data of nodes would be merged to
form the block, resulting in better randomness. However, there is a marginal change in
the entropy value of the data over the rounds, with a change of 0.32 over 2000 rounds
of implementation.

The model may be analyzed over divergent key sizes for better performance analysis.
The extra information taken when transferring packets is determined by network overhead.
Because increased overhead leverages network performance, overhead substantially influ-
ences total network performance. The network overhead concerning the number of bits in
connection to the number of devices is shown in Figure 13.

The experimental findings show that, as the sum of nodes in a network grows, so does
the amount of overhead it incurs. Congestion in the network is avoided since the approach
does not show an exponential development in network overhead. The performance of the
proposed security model for AAT was analyzed over divergent metrics such as energy
consumption, network delay, network overhead, and time in generating hash, as well as
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the tradeoff between encryption and decryption delay. It was observed that the proposed
model exhibited a reasonable performance in all the cases considered for evaluating the
model’s performance.
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The potential limitation of the current study includes the type of nodes being con-
sidered in the evaluation process. Due to the underlying constraints, all of the nodes
are considered to be heterogenous, and in real time, the nodes are heterogeneous, so the
results and analysis are confined to the limited functionality of the proposed network
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model. The strength of the security model is proportional to the size of the key used in
the encryption process [34]. In the current study, the key size is fixed throughout the
analysis, and the model’s performance can be further evaluated against varied key sizes.
The crypt analysis concerning any of them is not performed in the current study, which is a
potential limitation.

6. Conclusions

The security of data exchanges over the sensor devices in IoT technology is excep-
tionally important, and the current study focuses on ensuring the security of the more
sensitive data in the distributed environment. The data are encrypted at the master nodes
to ensure optimal utilization of the energy resources for better network sustainability. The
master nodes in each cluster are responsible for data encryption using the data aggregation
mechanism and public key cryptosystem. The model’s performance was analyzed concern-
ing the network delay, computational delay, network overhead, energy consumption for
transmission, and overall energy consumption. It was observed that the model exhibited
a reasonable performance concerning all of the parameters mentioned above. It was ob-
served from the experimental outcome that the model showed a linear growth in energy
consumption, network delay, and cryptographic time measured over the rounds with a rise
in the overall number of nodes in the network that are involved in communication, which
proves there is incremental demand for the resources rather than an exponential growth
that would impact the sustainability of the network. The entropy measures prove that the
cipher text is complex to perform the crypt analysis by the attackers. The study was limited
to the homogeneous sensor nodes responsible for sensing and transmitting the data over the
network. Still, in real-time scenarios, the network must work with heterogeneous sensors
and network nodes in the environment. Only evaluating the model with homogeneous
nodes is a major potential limitation of the current study, as the real-time performance
would broadly vary from the simulated environment.

As the proposed software-defined security model is deployed in the medical setting,
it is necessary to evaluate the model with divergent sensor nodes to extensively analyze
the efficiency of the model. The security of the model can be further analyzed over the
varied key size to analyze the impact of the key size on the confidentiality of the data.
Moreover, the aggregation-based data encryption models are suitable for networks with
limited nodes. The crypt analysis is one of the pivotal limitations of the current study,
which can be addressed in future research on various attacks. Blockchain-based models
would be more reliable with networks with more nodes. However, blockchain imple-
mentation needs considerable resources, and the wireless sensor network is sensitive to
computational resources. The influence of noise over the network delay is not considered
in the current study, which is one of the potential limitations of the current study. How-
ever, noise has a significant impact on the performance of the model; hence, an in-depth
analysis of noise modulation would assist in comprehending the real-time performance
of the model. The noise in the channel is the other important aspect, where the noise is
maintained to be constant in the current study, but in a real-time scenario, the noise would
change across the channel based on divergent factors. The performances at divergent noise
levels could be analyzed in future studies. There is great scope for research in designing
lightweight security models that could accommodate more nodes and a network with
heterogeneous nodes.
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