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Abstract: A significant technological transformation has recently occurred in the agriculture sector.
Precision agriculture is one among those transformations that largely focus on the acquisition of the
sensor data, identifying the insights, and summarizing the information for better decision-making that
would enhance the resource usage efficiency, crop yield, and substantial quality of the yield resulting
in better profitability, and sustainability of agricultural output. For continuous crop monitoring, the
farmlands are connected with various sensors that must be robust in data acquisition and processing.
The legibility of such sensors is an exceptionally challenging task, which needs energy-efficient
models for handling the lifetime of the sensors. In the current study, the energy-aware software-
defined network for precisely selecting the cluster head for communication with the base station
and the neighboring low-energy sensors. The cluster head is initially chosen according to energy
consumption, data transmission consumption, proximity measures, and latency measures. In the
subsequent rounds, the node indexes are updated to select the optimal cluster head. The cluster
fitness is assessed in each round to retain the cluster in the subsequent rounds. The network model’s
performance is assessed against network lifetime, throughput, and network processing latency. The
experimental findings presented here show that the model outperforms the alternatives presented in
this study.

Keywords: precision agriculture; software defined network; network latency; network lifetime;
sensor nodes; throughput

1. Introduction

Agriculture is defined as an activity humans undertake to ensure that a population
has access to adequate, safe, and nutritious food sustainable. Many countries rely on the
exports of agricultural products to generate adequate revenue to feed their citizens. In
such a context, agricultural ties and crop yields are essential, and more strategies and
approaches have been practiced recently to ensure productivity enhancement [1]. Real-
time monitoring of the environmental condition and remote control in agriculture is fast
expanding to create more profitable and efficient agricultural systems and instruments.
Precision agriculture has the potential to go in this direction. These two words refer to
integrating sophisticated technology with traditional agricultural techniques for fine-grid
crop management. Farmers may benefit from vital environmental information from their
cultivated regions provided by intelligent farming systems, enabling them to boost their
productivity and revenue. These technological advancements have the potential to benefit
practically every aspect of agriculture, from seeding to irrigation to crop management and
harvesting systems [2].

Precision Agriculture (PA) is a movement that aims to facilitate and optimize agricul-
tural growth for both farmers and society. It is important to note that PA is an advanced
farming technology that monitors, evaluates, and records agricultural areas and crops.
Advanced sensing technology has allowed on-site soil and climate monitoring to provide
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precise recommendations. Increased agricultural production, decreased environmental con-
sequences, and enhanced human well-being may be achieved using Internet of Things (IoT)
technology. Sensors would assist in monitoring farm inputs [3]. Farmers use optimized
inputs like water and fertilizer to boost output without sacrificing quality and cost [4].
The desire for increasing agricultural efficiency while minimizing environmental impact
pushes the progress of innovation towards integrated “smart” agricultural production
that replace traditional farming techniques. Knowledge-based agricultural management
systems with autonomous systems have been created to minimize the inputs by considering
time-sensitive and demographic crop-centric conditions [5]. However, feasibility studies
analyzing the costs and advantages of implementing agricultural robotic mechanisms as
recently launched models are required to enable greater acceptance by sector users [6,7].

The sensor nodes would transfer the real-time data to the base station (BS), which
is further processed for precise decision-making. The sensors’ lifetime and the sensor
devices’ communication would make the process challenging. The data is transferred
over a predefined path as the routing technique recommends. Static routing techniques
are more secure than dynamic routing; nevertheless, solutions based on static routing
are not suitable for broad areas like agriculture farms or in the network where scalability
matters. IoT technology has been extensively fused with other industries in recent years
to encourage interaction that would enhance network performance, resource usage, and
load distribution [8]. Climate-related difficulties may be solved in the agriculture sector by
implementing innovative IoT systems, which can boost agricultural yields and productivity.
For decades, agriculture has used sensors to procure data in static settings. The offline con-
figuration can gather static data and gives enough knowledge to make excellent judgments
about future yields or crops for the following year. Still, it cannot provide data on rapid
environmental changes jeopardizing agricultural products.

This article aims to use cutting-edge IoT-based sensor infrastructure to gather informa-
tion from the surroundings and transfer the sensor data to the BS for timely decision-making
in precision agriculture. Wireless agriculture sensors are dispersed across the agricultural
field in the suggested framework to extract information relating to soil composition, such
as moisture, temperature, and humidity levels. This data is safely transported to the cluster
heads, which serve as the point of contact or as a manager for data exchange to the BS.
Following is a list of the primary aspects of the study.

• The suggested software-defined network is efficient in establishing a wireless sensor
network that is robust and computationally efficient with multiple clusters of nodes
with divergent levels of residual energy.

• The sensor node’s responsibilities are delegated to the cluster heads for further pro-
cessing, increasing the nodes’ survival. It ensures node availability by discharging
responsibilities depending on available residual energy.

• The clusters are updated over multiple rounds concerning their fitness values, that
result in clusters with an optimal number of nodes.

• Finding a cluster head (CH) that can effectively oversee data flow between sensor area
nodes and the BS.

• Each round, the CH-index value is updated concerning the local and global best node
index values. At the same time, the initial CH-index is determined based on the
residual energy and the distance to the BS.

• Validated the proposed framework against existing studies concerning various net-
work characteristics and summarized the findings.

The other sections of the paper are organized as follows. Section 2 discusses the
Material and Methodology, which discusses different networking metrics used in evaluating
the model and the assumption in the simulated network. Section 3 discusses the proposed
Energy Aware Software Defined Network model. Section 4 summarizes the results obtained
from the experimentation. Section 5 offers the conclusion and future scope.
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Literature Review

Placidi et al. [9] have proposed a low-cost soil moisture sensor named Sentek commer-
cial sensor that works over a LoRa WAN-based network for economic precision agriculture.
Loamy to silty soils were compared. The moisture readings were accurate. However,
reliability issues were found that might be addressed by using costlier commercial sensors.
The research emphasizes sensors for analyzing soil moisture content without handling
other critical characteristics like pH, temperature, humidity, and sunlight. Hsu et al. [10]
offer a novel service approach built on top of the IoT cloud computing platform, which
may be employed to enhance the current approach of integrating the cloud-to-physical
networking and the processing capabilities of the IoT. This study applies cutting-edge
platform technologies to the cloud agricultural platform. It may collect vast area data and
analysis through cloud integration, enabling farms with limited network bandwidth data
resources to provide agricultural monitoring automation and pest control picture analysis.

A robust network infrastructure for monitoring and regulating agricultural fields in
remote areas was introduced in research by Ahmed et al. [11]. They introduced an IoT-based
control system for farming and agriculture development. All topological components and
enhancements are thoroughly reviewed and studied. The IoT routing and MAC solution
accomplished energy efficiency, low latency, and substantial throughput. Integrating a
Wi-Fi long-distance (WiLD) network over a fog-computing strategy makes the system’s
performance possible. Another study for alerting the farmers on mildew issues was
proposed by Sergio et al. [12], using the IoT paradigm. They presented the SEnviro (Sense
our Environment platform) system to monitor grape crops. To reduce communication
between endpoints, they employed the edge computing concept. The authors in the study
on an irrigation system based on IoT that recognizes plants automatically, Kwok et al. [13],
have used deep learning to recognize the kind and category of plants for an automated
plant watering system. The plant’s water need is computed by identifying a current set
of plant photos and data set obtained from the farm. When the identification procedure
is accomplished, it uses the database to obtain irrigation information. Modeling training
procedures takes time since many photos must be saved.

In the study by Ratnaparkhi et al. [14], sensors are investigated as the most potent
instrument for IoT deployment. Based on their uses, a broad range of agricultural sensors
are provided. Sensor arrays, location, acoustic and airflow sensors were among the sensors
studied. It was also discovered that agricultural sensors increase agricultural output.
Some of the issues encountered in installing sensors in Distributed systems include their
customization, continuous Wi-Fi connection, the management of errors and malfunctions,
and identifying the proper sensors for diverse contexts.

Jawad et al. [15] conducted a study on agricultural applications based on wireless sen-
sor networks. This study aims to conduct a comparative analysis of Wi-Fi, Bluetooth, LoRa,
diverse cellular technologies, and Sig Fox wireless and protocol suites. LoRa and ZigBee
proved effective for Precision Agriculture because of their long-range communications and
low energy needs. Many methods and techniques concerning the power consumption of
WSNs were grouped. The authors propose a smart agricultural IoT (SMAIoT) system to
track and analyze data from various inexpensive sensors [16]. This network infrastructure
is designed to gather data from soil, air, groundwater, and animals and utilize them to
make appropriate judgments. The suggested framework’s distinctive feature is automat-
ing tasks, such as irrigation, fertilizers, insect identification, and pesticide spraying, with
high productivity.

Long-Range Wide-Area Network (LoRaWAN) [17,18] is a technology that could inter-
net connect multiple devices over the internet in a much-secured manner. The LoRaWAN is
inspired by Low Power Wide Area Network (LPWAN) due to its capacity to communicate
across large distances [19]. LoRaWANs offer low-power, low-cost, long-range, and low-
data-rate communication. LoRaWAN includes end devices, gateways, network servers,
and applications. Gateways and network servers link hundreds of thousands of LoRa
end devices. LoRa lets low-power devices communicate long-distance with low bitrate. It
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is the best choice for most IoT applications, including smart towns, smart billing, intelli-
gent transportation, automated lighting, and precision agriculture. LoRa only works in
low-bitrate settings [20]. The main limitation of the LoRaWAN technology is the limited
number of nodes based on the duty cycles, and not suitable for applications that rely on
low latency applications.

Vij A et al. [21] have used a pre-processed agriculture data set to add machine-
intelligent approaches to the agricultural decision support model. Rather than utilizing
a publicly accessible dataset, a model is designed to gradually learn plants’ watering de-
mands. Various ML algorithms are tested in terms of accuracy for making irrigation choices.
Before making accurate judgments, manual irrigations are conducted twice. Because of the
model’s dynamic nature, data are processed in stages and may be used for several plants
with different watering circumstances. There is a great necessity for a learning method that
can be taught by itself utilizing a substantially lighter learning procedure with environmen-
tal factors, which does not require more memory in the system but require more computing.
According to the study, edge computing should be included in the agricultural system for
making accurate decisions with immediate calculation locally. This article will describe
a smart infrastructure that uses IoT and edge computing to monitor soil moisture using
sensors, data transfer among sensors, and an Analytics-as-a-Service cloud. The details of
various state-of-art approaches are shown in Table 1.

Table 1. Summary of various state-of-art models in WSN for real-time data exchange.

Approach Highlights Limitations

Sentek commercial sensor [9]
Affordable precision agriculture employing a
low-cost soil moisture sensor that works on
Lora WAN

The model is efficient in low-data rate
communication. This technology is feasible to
implement over limited sensors. However,
multiple other meteorological sensors would
impact the performance of the network model.

WiLD network [11]

Wi-Fi long-distance network is designed to
implement over a fog technology that is
energy efficient, has low latency, and has
substantial throughput

The model is efficient for fog technology, but
the technology needs additional routers, hubs,
and gateways for data storage and processing
system.

SMAIoT network [16]

Smart agricultural IoT is efficient in acquiring
and analyzing real-time data from various
in-expensive sensors automating tasks, such
as irrigation, fertilizers, insect identification,
and pesticide spraying.

The study has limitedly analyzed the latency
and the network’s sustainability, which are
crucial in applications like PA.

LoRaWAN network [17]

Long-Range Wide-Area Network is efficient
in applications like healthcare and smart
agriculture domains. The data among the
sensor’s devices are a well-secured manner.

The technology is feasible for low data rate
applications and applications where network
latency is not a crucial parameter.

LEACH [22]

Low-energy adaptive cluster hierarchy
models are one of the energy-efficient models
used in WSN technology for interconnecting
multiple nodes in the network.

The model does not take the distance measures
like node-node and node-BS distances are not
considered while assessing the energy models,
and residual energy is not considered when
selecting the CH.

PB-RESHM [23]

Probabilistic Buckshot-Driven Cluster Head
Identification is an efficient model for
choosing the optimal cluster head to
exchange data in the WSN.

The proposed model selects the optimal CH
provided the CH in the initial round is
efficiently chosen, as the CH in subsequent
rounds relies on the CH in the current round.

The existing technologies for precision agriculture primarily focus on data acquisition
and processing of the data for precise recommendations to the farmers. Some studies
focus on the security aspects of the study. There are ample studies that focus on the
lifetime of the network and effective communication among the nodes in the network.
However, the models either focus on the survivability of the nodes or the efficient routing
mechanism, not on both things simultaneously. Nevertheless, there is demand for a model
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to maximize the network’s lifetime and routing techniques for pushing the data across the
sensor devices and the BS. The suggested software-defined network is efficient concerning
the sustainability of the nodes. Additionally, the proposed model does have minimal
network latency. The CH is selected based on the index values populated based on the local
and global best values, resulting in an optimized way of assessing the node index values
and choosing an optimal CH for the data exchange. The implementation of the proposed
technology is discussed in the forthcoming sections of the study. The pivotal point of the
study focuses on the survivability of the network but maintaining the throughput and
latency of the network to be at the optimal level. However, the latency of the network is
not a crucial parameter in PA, yet the model desired to maintain the latency to be minimal.

2. Material and Methodology

IoT technologies have recently been used in various areas because of their cheap
cost, ease of implementation, and cost-effective ecosystem. A vast array of sensor nodes
was dispersed around the field to perceive the required data in IoT [24]. Under either a
single-hop or multi-hop data transmission paradigm, data are gathered and transmitted
to the BS for further processing. The current section of the paper elaborates on the details
of the implementation environment, evaluation parameters used in assessing the model’s
efficiency, and the proposed energy-aware software-defined network model.

The IoT environment is separated into multiple regions, and each area has one clus-
ter leader responsible for gathering and forwarding sensory input to BS. Additionally,
most sensor nodes went into sleep mode to extend the network lifespan. Various energy-
aware technologies are used to formulate the network architecture for exchanging data
among the nodes. Some of those technologies include Low energy adaptive cluster hier-
archy (LEACH) [25], improved chain-based clustering hierarchical routing (ICCHR) [26],
Multiple-Attribute Decision-Making (MADM) [27], Probabilistic Buckshot-Driven Clus-
ter Head Identification (PB-RESHM) [23], Energy Aware Distance-based Cluster Head
selection and Routing (EADCR) protocol [28], Spider Monkey Optimization (SMO), Energy-
efficient Cluster Head Identification (SSMOECHS) [29], Group Search Ant Lion with Levy
Flight (GAL-LF) [30], Grasshopper Optimization Algorithm (GOA) [31], Probabilistic Clus-
ter Head Selection (LEACH-PRO) [32], heterogeneous Modified Grey Wolf Optimizer
(HMGWO) [33], Fibonacci Based Trimet Graph Optimization (FBTGO) [34], and fitness-
value-based improved GWO (FIGWO) [35], and are used in identifying the CH and ex-
changing the data with the BS. Optimizing the selection of the CH in a wireless sensor
network involves prioritizing the node with the highest residual energy while considering
the minimum energy consumption required by the communication mechanism. This will
facilitate the transmission of a greater amount of data simultaneously by the CH. Energy or
distance are often employed as the primary identifiers of the CH. Individual nodes with
significant leftover resources and energy with low operating costs are the best candidates
for cluster heads. Each round assigns an updated index value to the appropriate cluster
head, relying on the leftover resources. Existing indices are updated to reflect the current
best CH globally in the network.

2.1. Implementation Environment

The proposed model for precision agriculture is implemented in the simulation en-
vironment using the CupCarbon simulator, a discrete-event-driven model installed in a
Windows environment. The Cupcarbon simulator is publicly available [36]. The network
events are periodically captured from the simulator. Table 2 summarizes the implementa-
tion environment in detail.

This scenario takes place over a 100× 100 m2 elevation grid. A maximum transmission
distance of 30 m may be detected in this case. The scenario is used to evaluate how well the
given strategy works. The model was constituted over the same cohort of nodes executed
for 2000 repetitions. The details of the simulated environment are discussed in Table 3. The
sample screens of the simulation environment are presented in Figure 1.



Sensors 2023, 23, 5177 6 of 19

Table 2. Details of the Implementation Environment.

Environment Details Specifications

Machine HP Pavilion series
Processor Intel Core-i5 12th Generation

Operating System Windows 10
Architecture X64-bit

Memory 16 GB DDR4-3200 MHz RAM
Software CupCarbon Simulator

Simulator version V5.2
Supporting software Java JDK 1.8

Table 3. Details of the simulation Environment.

Environment Details Specifications

Topological Area (In meters) 100× 100 m2

Location of BS 50× 50
Number of Nodes 100

Initial Energy of Node 100 mW
Number of Base Stations 1

Stationary or mobile Stationary
Radio electronic energy 50 nJ/bit

Message length [node to CH] 2800-bits
Message length [CH to BS] 6400-bits

Length of control packet 200-bits
Number of rounds of packet transmission 500/2000/3000

Limit of transmission distance 50 m
Center frequency (GSM900) 950 MHz

Intra-cluster routing Single Hop
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2.2. Evaluation Metrics

The performance of the proposed energy-aware IoT architecture in PA is being assessed
using various standard evaluation metrics like Energy consumption, network latency, mean
network lifetime, bandwidth consumption, and the node’s communication fitness. The
significance of each evaluation metric mentioned above is discussed along with the formula.
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2.2.1. Energy Consumption

Energy consumption is critical in determining the sensor network’s longevity. Each
node in the network has leftover energy connected with it. The energy is utilized for
communicating data among other nodes across the network. The longest-lasting nodes may
designate the nodes with the most energy resources as the local head for data exchange with
the BS. Energy consumption is a statistic used to assess network performance. Topological
adjustments, such as the location of the linked BS and the sum of links associated with
the node that will minimize the energy demand enhance the network’s sustainability. The
energy usage for data exchange with BS is calculated using the following Equation (1) for
direct communication. Nodes that rely on the other nodes would rely on the other nodes to
exchange the data [37].

energydirt(dst) = de + ddcdst2 (1)

energyexct(dst) = de + ∑n
x=0 dex dst4 (2)

From the above equations,

energydirt (dst) The energy needed to push the data directly to BS
energyexct (dst) The energy required for transferring the data through a neighboring node

de Amount of power the intermediate relay nodes use during a data transfer.
ddc Amount of energy required for direct transfer of the data to BS.
dst the distances measured among the corresponding node and the destination node
n The adjacent nodes that facilitate the transmission of data.

2.2.2. Mean Network Lifetime

The mean network lifetime is another crucial statistic in assessing network design
performance. It is always desired to have a network with a greater network lifetime. The
sum of nodes in the network determines it. The network lifetime over the time stamps of
the range 1 to n is assessed using Equation (3) [38].

nl = ∑n
tim=1

1

π
(

2 ×
(

dbs
nc

)
+ 1
)
× nc2 × dn

× tn − π × dbs
2 × dn

tn
(3)

where the notations used are as follows
tn Denotes the total number of nodes in the network.
dn The nodes density within the network.
dbs The distance between the corresponding node to the BS.
nc Denote the network coverage.
nl Denote the network’s lifetime.

2.2.3. Bandwidth Consumption

Data are continually transferred between network nodes and the BS, leading to data
exchange bandwidth usage. The CH uses bandwidth while sharing data among sensor
network nodes, which is desired to be minimum [39]. The formula for the bandwidth
consumption is identified by Bc is shown in Equation (4).

Bc = TAb −∑p
i=0 Bri (4)

The variable TAb in the above equation denotes the total allotted bandwidth and
the variable Br designates the bandwidth required at each instance i in the network. The
bandwidth requirement is assessed based on the sum of spike packets passing through the
node at an instance of time concerning bits per packet as shown in Equation (5).

Br =
Sp × bp

It
(5)
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where the notations used are as follows
Sp the sum of spike packets.
It Instance of time.

bp Bits per packet.

2.2.4. Node’s Communication Fitness

The communication fitness of a node is one of the indications used to determine if it can
function as a CH. At some stage in the network, the node with appropriate communication
fitness is identified as competent to become the CH. The fitness of node communication
is tested regularly. The evaluated value aids in determining the best cluster head node
for data transmission among nodes and the linked BS [40]. The formula for assessing the
node’s fitness is shown in Equation (6).

fn = 1−min
(

1, ∑a ∑b

(
max

(
0,

xab − et

et

))
/tn

)
(6)

where the notations used are as follows
xab Represents the energy corresponding to the internal node communication.
et Energy threshold at the instance.
tn Total number of nodes in the network.

2.2.5. Network Latency

Network latency refers to the time it takes to exchange data among nodes and the
BS, i.e., connected BS, through CH. Network latency is intended to be as low as possi-
ble for speedier data interchange. If the packet must be transferred between numerous
cluster heads before reaching the BS, the delay will grow as the number of data packets
is exchanged. Each CH must wait until all the packets are processed, which includes
propagation and queuing delays. In general, network latency is measured in terms of time
delay associated with the distance the packet travels at a determined transmission rate
to the size of the packet at the specified transmission rate [41]. The formula for network
latency over the transmission rate Tr is determined based on Equation (7). The propagation
delay associated with the network is shown in Equation (8), and the Serialization delay is
shown in Equation (9).

nl =
pd
Sd

(7)

pd =
dst
Tr

(8)

Sd =
bp

Tr
(9)

2.3. Architecture Assumptions

Several network assumptions are emphasized before discussing the technical aspects of
the recommended Energy-aware IoT Framework for precision agriculture. The hypothesis
is listed in bullet points as follows.

• There are divergent sensor nodes scattered in each network region for real-time monitoring.
• The regions in the network are circular size areas relying on the network coverage of

the nodes.
• The nodes and the BS are fixed upon deploying them to establish the network.
• All the communication links among the sensors and sensor nodes to the BS are sym-

metric and bi-directional.
• Each network node differs concerning the availability of the residual energies like

batter life, processing capabilities, and available memory.
• Based on the leftover energy reserves, nodes are classified as low, sustainable, or high.
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• Each region in the network would have multiple clusters, and each would have
multiple sensor nodes. Among those sensor nodes in the cluster, there would be one
CH that is responsible for the exchange of the data.

3. Energy Aware Software Defined Network model

In each search space, the suggested model is non-dominant. Depending on available
resources, nearby nodes, proximity to the corresponding BS, and associated network
maintenance expenses, CHs are chosen. The proposed approach for sensor networks
consists of two phases. At first, we consider energy, distance, and latency while selecting a
cluster’s heads. In the next phase, the index at each cluster head is updated in line with the
local and global best residual energies, and the indexes and the nodes are updated. The
present subsection of the suggested framework provides an in-depth description of the
framework. The connection among the sensor node, CHs, and BS is shown in Figure 2.
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3.1. Initial Selection of the Cluster Head

The initial selection of the CH is based on multiple factors considered in choosing the
optimal CH in the cluster. Choose the node with the most available residual and lowest
energy consumption to find the most suitable CH. It will enable the CH to transmit more
data packets. Energy and distance are the main determinants in locating the CH. It is
desired to consider the CH close to the BS, as it would consume less energy to push the
data to the BS, and the communication latency can also be minimized [42]. The CH-index
is used in determining the significance of the CH. The node that has the highest CH-Index
would be assumed to be the optimal node for being a cluster head. The energy metric for
overall communication is identified by Ec for p packets over a distance d, from the node to
the BS is shown in Equation (10) [43].

Ec = Eint −
{
(Ie × p) +

(
Et × p× d2

)}
(10)

where the notations used are as follows
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Ie Implied energy

Et
The energy needed to push the data from the node
to BS

The formula for implied energy is shown in Equation (11) [44].

Ie = Etd + Eta (11)

where the notations used are as follows
Etd The total energy deployed to exchange the p packets among the sensor node and the BS
Eta The energy needed for data time aggregation

The total energy is measured as recognized by the notation Etot, which also includes
the amount of idle time recognized by Ei of the node as shown in Equation (12).

Etot = Ei + Ec (12)

The distance measure is assessed between the CH and the BS using the Euclidean
distance measure. The Euclidean distance measure is generally used in spatial image
processing techniques [45]. The same distance measure is used in measuring the distance
among the coordinates in terms of measuring metrics, i.e., meters [46]. The notation
dm recognize the corresponding formula for the distance measure as shown in Equation (13).

dm =

√(
my − ny

)2
+ (mx − nx)

2 (13)

In the above equation, the
(
mx, my

)
are the coordinates associated with the CH, and

the coordinates
(
nx, ny

)
correspond to the BS. The delay among the nodes is the other

significant parameter that is considered. The latency is proportional to the density of nodes
within the cluster. As a result, the count of cluster nodes should be reduced to minimize
the delay. The corresponding formula is shown in Equation (14).

delay =
maxCn

i=1(CHi)

cn
(14)

In the above equation, the numerator maxCn
i=1(CHi) denotes the maximum delay

associated with the CH and the notation cn designates the sum of nodes in the cluster. The
CH-index is measured based on all the above measures and the residual energy availability.
The formula for the CH-index is shown in Equation (15).

CHindex =
Rei

1
cn

∑cn
j=1 Rej

+ (ωx × Ec) +
(
ωy × dm

)
+ (ωz × delay) (15)

From the above equation, the notations ωx, ωy, ωz designated the weights associated
with each of the features. The weight ωx is associated with the communication energy
metric, and the weight ωy corresponds to the distance measure; the associated values
are assumed to be in the range of 0 and 1. The weight associated with the delay, i.e., ωz
is considered 0.2 in the earlier studies. The deployment of the sensors and the network
topology can be seen in Figure 3.

3.2. Updating of the CH-Index

The next phase of the proposed model is to update the CH-index values, which would
assist in identifying the optimal CH in the current iteration. The index of the CH is being
updated using the spider monkey optimization model. The updated CH-index value
based on the SMO algorithm is used in the successive rounds of the network lifetime. The
SMO approach considers the cluster heads’ local and global best CH-index values. During
the initiation phase, the initial fitness of the search space is determined based on resided
energy index, delay, and distance measures. In the successive phases, the CH-index values
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are considered in optimizing the index values. The corresponding objective function for
updating CH-index is shown in Equation (16).

CHindex = CHindex +(Ilb − CHindex)× rand(0, 1)+
(

CHpb − CHindex

)
× rand(−1, 1) (16)
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In the above equation, the notation Ilb represents the index value of the local best node
in the cluster, especially when a node other than the CH may have a better index value
based on the current environmental conditions. The function rand(0, 1) is to confine the
range of values between 0 and 1 and similarly for the function rand(−1, 1). The notation
CHpb designates the node’s perturbation rate based on underlying factors. The value of the
CH-Index would be updated based on the index value of the global best. The global best is
recognized as the node with the highest CH-Index value. The corresponding function to
update the index values based on the global best is shown in Equation (17).

CHindex = CHindex +
(

CHgb − CHindex

)
× rand(0, 1)+ (Ilb − CHindex)× rand(−1, 1) (17)

In the above equation, the notation CHgb designates the global best value of the index
values. The assessed CH-index is used in updating the CH.

The fitness of the cluster is assessed every time to decide if the cluster could be retained
for the next successive rounds or to merge the nodes in the cluster with the neighboring
clusters. The fitness of the cluster is identified by fc and is assessed using the formula as
shown in Equation (18).

fc =
1

∑nc
i ∑ni

j

√
|CHindex −Mindex|

(18)

From the above equation, the notation nc denotes the sum of clusters in the network,
and the notation ni denotes the sum of corresponding nodes within the cluster. The mean
index values of all the nodes in the cluster are identified by Mindex. Based on the value of
the cluster fitness, the clusters in the network are retained for subsequent rounds of the
transmission network. The Algorithm 1 for the CH selection is shown below.



Sensors 2023, 23, 5177 12 of 19

Algorithm 1: CH selection
Input:

Number Nodes: 100
Initial Energy: 100 mW
Number of rounds: 2000

Output:
Assessment: Network Lifetime, Network Delay, Network Throughput
Start

Function:Initial_CH-Index()
for 1 to n do // n denotes max nodes in the network

Calculate Ec //Ec denotes energy consumption
Calculate dm //dm denotes the distance measure
Calculate delay //communication delay
Approximate

(
ωx, ωy, ωz)

Initial_CH− index(Ec , dm,delay,ωx,ωy,ωz)
return (CH-index value)

end for
while (round < 2000) do

Function: Update CH-Index()
for 1 to n do

Identify Ilb
Identify CHgb
Calculate CHpb

Update_CH− Index(Ilb ,CHgb, CHpb)
return (CH-index value)

end for
Function: Cluster_fitness()

for 1 to ncdo //nc denotes the number of clusters
for 1 to nido //ni denotes the number of nodes in the

cluster
Calculate Mindex //Mindex mean of all node index

Cluster_fitness(Mindex , CHindex)
return (Cluster_fitness value)

end for
end for

Update Clusters
Return (Lifetime, Delay, Throughput)

Stop

4. Results and Discussion

Regarding network availability, throughput, remaining energy, energy usage, and
mean network lifetime, the suggested software-driven network model is carefully studied
compared to the findings of various advanced network models. The first connection
creation and node list update take 845-time units. The proposed software-driven network
model is compared to current models using a comparable experimental setting. In the
current study, various models like LEACH, PB-RESM, SSMOECHS, Two-Tier Clustering-
based Data Aggregation (TTCDA) [47], and Energy-efficient Clustering Data Aggregation
(EECDA) [48] are considered in the evaluation of the proposed model. The network life
is the metric measured in terms of time units, which is generally analyzed against the
percentage of the active nodes in the network along with measures like First Node Die
(FND) and Last Node Die (LND). The FND is the metric that denotes when the first node
turned inactive in the network, and the LND denotes the last node that turned inactive
in the network. Either of the metrics would assist in analyzing the network lifetime. The
network lifetime performance is shown in Table 4 on executing for 3000 rounds. The
corresponding graphs generated from the experimental values of network lifetime are
shown in Figure 4.
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Table 4. Experimental values of network lifetime.

Approaches FND
% of Nodes Alive in the Network

LND90 70 50 30

LEACH-C 1294 1515 1695 1843 1976 2201
SSMOECHS 2071 2172 2218 2242 2250 2259
PB-RESHM 2162 2236 2309 2385 2439 2532

LEACH-PRO 1159 NA NA 1720 NA 4800
HMGWO 1450 NA NA 1675 NA 1884
FIGWO 1248 NA NA 1612 NA 1906

Proposed Approach 2237 2268 2330 2397 2470 2579
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Node Die.

The model’s performance is assessed concerning throughput and network lifetime
metrics. It is desired that the network throughput is always desired to be high, which
determines the sum of packets that are successfully delivered. The study’s throughput is
measured as kilobits per second (kbps). The network lifetime is measured in time units,
which elucidates the availability of the nodes in the network, which is also desired to be
high. The lifetime metrics are evaluated as the total rounds of the network to deliver the
packet without significant loss successfully. The experimental values of network throughput
and lifetime are shown in Table 5. The corresponding graphs of network throughput and
network lifetime are shown in Figure 5.
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Table 5. Experimental values of Network Throughput and lifetime.

Network Throughput (kbps) Network Lifetime

TTCDA 3.32 1425
EECDA 2.55 1532

PB-RESHM 3.65 1673
Proposed model 4.01 1820

The other metrics, like energy consumption and leftover energy at the stable homo-
geneous network, are discussed in Table 6. From the metrics mentioned above, leftover
energy is the metric that determines the remaining residual energy in the network upon
successful transmission of the data, which was desired to be high. Energy utilization is the
metric that presents the overall energy consumption for network maintenance and data
exchange, which is desired to be a minimum. The energy parameter in the current study is
measured in terms of milliwatts (mW). The corresponding energy utilization and leftover
energy-related graphs are shown in Figure 6.

Table 6. Experimental values of Energy utilization and Leftover Residual Energy.

Approaches Energy Utilization
(mW)

Leftover Residual Energy
(mW)

TTCDA 50.3 49.7
BECDA 68.5 31.5
EECDA 72.8 27.2

PB-RESHM 46.5 53.4
Proposed model 41.2 59.7

Sensors 2023, 22, x FOR PEER REVIEW 15 of 20 
 

 

  

(a) (b) 

Figure 5. (a) Graphs representing the analysis of network throughput, (b) Graph representing the 

analysis of network lifetime. 

The other metrics, like energy consumption and leftover energy at the stable homo-

geneous network, are discussed in Table 6. From the metrics mentioned above, leftover 

energy is the metric that determines the remaining residual energy in the network upon 

successful transmission of the data, which was desired to be high. Energy utilization is the 

metric that presents the overall energy consumption for network maintenance and data 

exchange, which is desired to be a minimum. The energy parameter in the current study 

is measured in terms of milliwatts (mW). The corresponding energy utilization and lefto-

ver energy-related graphs are shown in Figure 6. 

Table 6. Experimental values of Energy utilization and Leftover Residual Energy. 

Approaches 
Energy Utilization 

(mW) 

Leftover Residual Energy 

(mW) 

TTCDA 50.3 49.7 

BECDA 68.5 31.5 

EECDA 72.8 27.2 

PB-RESHM 46.5 53.4 

Proposed model 41.2 59.7 

 

  

(a) (b) 

Figure 6. (a) Graphs representing the analysis of energy utilization for 2000 rounds, (b) Graphs rep-

resenting the analysis of leftover residual energy. 

For better analysis of the efficiency, the model is analyzed with other cutting-edge 

techniques like cumulative low-energy adaptive clustering hierarchy-

Figure 6. (a) Graphs representing the analysis of energy utilization for 2000 rounds, (b) Graphs
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For better analysis of the efficiency, the model is analyzed with other cutting-edge tech-
niques like cumulative low-energy adaptive clustering hierarchy-LEACH(Cum_LEACH) [49],
stable election protocol (SEP) [50], and distributed energy-efficient clustering (DEEC) [51].
The model is evaluated with an initial energy of 50 mW instead of 100 mW as the ini-
tial simulated energy for the other evaluations. Table 7 shows the model’s performance,
and leftover energy and consumption are reported in milliwatts to preserve consistency
throughout the study. The experimental values are evaluated for 500 rounds. The energy
consumption and leftover energy graphs are shown in Figure 7, with reduced initial energy
over 500 rounds.
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Table 7. Experimental values of Energy utilization and Leftover Residual Energy with reduced initial
energy over 500 rounds.

Approaches Energy Utilization
(mW)

Leftover Residual Energy
(mW)

Cum_LEACH 13.76 0.12
SEP 13.78 0.02

DEEC 13.65 0
Proposed model 11.73 0.74
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The experimental results in Tables 4 and 5 demonstrate that the proposed model
exhibits superior performance compared to the advanced models employed for comparison.
The proposed model has resulted in better network throughput, lifetime, and leftover
residual energy. The energy utilization is retained to be minimal compared to the other
models that are considered in the evaluation process. The other significant evaluation
metric is the computational delay in the network, which is assessed for each round. The
analysis is made over multiple rounds. The experimental results on delay evaluation are
presented in Table 8, and the corresponding graph on network delay is shown in Figure 8.
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Table 8. Experimental values of time delay in milliseconds at various rounds of the simulation.

Approaches Rounds
1 500 1000 1500 2000

GAL-LF 1130 790 1050 937 1010
GOA 1080 1060 830 1200 986

PB-RESHM 1000 995 876 843 793
Proposed Approach 903 824 774 738 651

The proposed model has a minimal time delay at all rounds from starting till the end
of the network’s analysis. The network with minimal would have a faster response to
the service request, and the network would be more productive. The proposed network
procedure has been shown to perform well across several assessment parameters. The
proposed model has approximately 26% times better node sustainability in the network
than the other existing models. It can be observed from the results obtained that the time
delay at the 2000th round of the proposed model is approximately 18% lesser than the PB-
RESHM, which is a model that holds the least time delay among the existing contemporary
models. The energy utilization of the model is approximately 14% better than the other
state-of-art models, and the model holds approximately 10% more residual energy than the
other existing models. The comparison in the study is made across multiple approaches,
and the experimental values of the state-of-art models are acquired from the previous
publications to ensure the values are authentic, resulting in the change of approaches over
multiple parameters.

5. Conclusions

The studies have determined that the WSNs are a crucial component of remote sensing
for smart agricultural systems, allowing for better monitoring, temperature monitoring,
irrigation system monitoring, and water supply monitoring. It’s crucial because it facilitates
interaction between various network entities in the intelligent agricultural ecosystem. A
WSN is made up of nodes that are in constant contact with one another and with a BS. The
sensors’ topology management, mapping, and storage, as well as their battery life, all have
their drawbacks. Due to these barriers, the efficiency of the intelligent farm system has been
diminished. The proposed energy-aware model is robust in establishing and maintaining
the network with reasonable lifetime, delay, and energy consumption. The experimental
analysis with various contemporary models has proven that the proposed approach has
outperformed network management. The unique way of choosing the initial CH based on
the underlying node capabilities, updating the cluster head index based on the local and
global best indexed, and assessing the cluster fitness to retain the cluster in subsequent
rounds would assist in better network establishment and maintenance.

The forthcoming strategy involves utilizing and establishing auto-encoder technology
to deploy sensors and prioritize feature significance in the cluster head selection process
within the network. The futuristic evaluations may consider evaluating against the network
with a broader area with dense nodes for precise analysis of the network’s robustness. The
network performance can be further assessed by incorporating the temporary support
nodes to improve the network’s lifetime.
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