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Abstract: Predicting crop yields is one of agriculture’s most challenging issues. It is crucial in making
national, provincial, and regional choices and estimates the government to meet the food demands
of its citizens. Crop production is anticipated based on various factors such as soil conditions and
meteorological, environmental, and crop variables. This study intends to develop an effective model
that can accurately anticipate agricultural production in advance, assisting farmers in better planning.
In the current study, the Crop Yield Prediction Dataset is normalized initially, and then feature
engineering is performed to determine the significance of the feature in assessing the crop yield.
Crop yield forecasting is performed using the Multi-Layer Perceptron model and the Spider Monkey
Optimization method. The Multi-Layer Perceptron technique is efficient in dealing with the non-
linear relations among the features in the data, and the Spider Monkey Optimization technique would
assist in optimizing the corresponding feature weights. The current study uses data from the Food
and Agriculture Organization and the World Data Bank to forecast maize yield in the Saudi Arabia
region based on factors such as average temperature, average rainfall, and Hg/Ha production in past
years. The suggested MLP-SMO model’s prediction effectiveness is being evaluated using several
evaluation metrics such as Root-Mean-Square Error, R-Squared, Mean Absolute Error, and Mean Bias
Error, where the model has outperformed in the prediction process with a Root-Mean-Square Error
value of 0.11, which is lowest among all the techniques that are considered in the statical analysis in
the current study.

Keywords: crop yield; multi-layer perceptron; spider monkey optimization; prediction;
performance analysis

1. Introduction

Today’s globe is beset by problems such as food insecurity, climate change, water
scarcity, and droughts. As a result, decision-makers and politicians must avoid food inse-
curity. While resource management and agriculture improve crop production’s economic
efficiency, food consumption rises as the population expands dramatically. To fulfill that
demand, crop quality, and output must improve. Dynamic agriculture may help various
nations build economies by enhancing economic efficiency [1]. Crop production predictions
that are accurate will assist decision-makers in better planning for concerns such as crop
conveyance, crop allocation, and economic efficiency. Aside from that, precise crop yield
estimates will allow for the most efficient use of limited land resources to fulfill both present
and future food needs. As a result, crop production forecast models must be correct. This
would allow them to improve existing agricultural and irrigation systems and assist in
better decision-making in exporting and importing food products. Saudi Arabia produced
approximately 89 million metric tons of maize in 2019, increasing from 84 million tons in
previous years [2]. It is worth noting that the demand for food production in the Kingdom
of Saudi Arabia (KSA) is changing, although expanding. From 2017 to 2019, it climbed by
roughly 1.3%. Despite the unfavorable meteorological conditions, the agriculture industry
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contributed 2.2% to the KSA’s GDP in 2018 [3]. Figure 1 shows the consumption of various
crops over the years in terms of metric tons across the globe.
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Planning and policy-making are critical in establishing food security in a nation like
Saudi Arabia, which lacks the key components of agricultural production, namely, land and
water. Saudi Arabia’s food security plans include decreasing food waste and improving
indigenous growth to lessen import dependency. Several efforts have been presented, and
the government is putting forth hard to prevent food waste and loss. While conventional
agricultural yield estimating techniques are time-consuming and unscalable, automation
estimation is cost-effective and extremely efficient. Real-time crop production projections
may assist farmers by providing high accuracy at a low cost. The current study focused on
designing a future perspective model that precisely assesses crop yield. While conventional
agricultural yield estimating techniques are time-consuming and unscalable, automation
estimation is cost-effective and extremely efficient. Real-time crop production projections
may assist farmers by providing high accuracy at a low cost. The model is designed by
incorporating the Multi-Layer Perceptron (MLP) that could deal with massive amounts
of increasing data with non-linearities. The Spider Monkey Optimization (SMO) would
ensure to retain the significant features in the prediction process by optimizing the feature
weights by considering both the local and global best feature weights over the iterations.

The food industry and the national and global economy are directly impacted by
predictions of crop yields. Crop yields are heavily reliant on irrigation and weather data.
Increasing irrigation does not always boost yield. Thus, irrigation optimization and more
sustainable irrigation schemes are crucial. One method for optimizing the process is to
predict yield using crop-recommended systems and to develop an ambient environment.
The variety of meteorological conditions, humidity, overall temperature, and underlying
environmental conditions will significantly influence soil composition and crop yield.
Therefore, the current generation has to find ways to mitigate the negative consequences of
environmental impacts on agricultural production.

In contrast, data-driven and intelligent machine models have become the dominant
technique for assessing crop yield. The current study is a thorough analysis that evaluates
the competence of a collection of state-of-the-art machine learning and statistical techniques
in conjunction with an extensive range of meteorological and environmental factors in crop
production forecasting. While simulation crop models are accurate predictors, they are
more difficult to implement than machine learning (ML) algorithms because of data storage,
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runtime, and data calibration restrictions. However, ML has seen widespread usage in
various situations, including ecological predictive modeling, because of its capacity to
handle non-linear connections and unstructured data with high-quality outcomes and
in a reasonable computation time. Figure 2 represents the various factors that influence
crop yield.

Sustainability 2023, 15, 3017 3 of 21 
 

 

because of data storage, runtime, and data calibration restrictions. However, ML has seen 

widespread usage in various situations, including ecological predictive modeling, 

because of its capacity to handle non-linear connections and unstructured data with high-

quality outcomes and in a reasonable computation time. Figure 2 represents the various 

factors that influence crop yield. 

 

Figure 2. Image representing various factors influencing crop yield. 

The motivation for the current study is the model’s ability to forecast crop production 

accurately, which would benefit both farmers and government bodies since it helps 

people to predict market trends, organize import and export activities, and reduce social 

costs. Aside from major agricultural corporations and small farmers, agricultural 

enterprises benefit from such forecasts because they may make informed decisions about 

crop management. The contribution of the current study is listed below: 

 Acquiring the crop-related data for training the model and analyzing the factors 

influencing crop production. 

 Performing Feature Engineering for localizing the features contributing to precise 

crop yield analysis. 

 Training the model and analyzing the hyperparameters to read the data’s insights 

adequately. 

 The Spider Monkey Optimization technique optimizes the Multi-Layer Perceptron 

model for analyzing the outcome. 

 Analyzing the model’s performance with various evolution metrics such as 

sensitivity, specificity, F1- Score, and accuracy measures. 

 The prediction efficiency of the model is being analyzed against the other state of art 

techniques used in crop yield prediction. 

The other parts of the study are organized in the following fashion, and Section 2 

presents the literature survey on various AI-driven models for crop yield prediction. 

Section 3 offers the details of the proposed model with adequate details about the 

proposed model and the optimization technique. Section 4 presents the results and 

statistical analysis and discusses the outcome of the proposed model. Section 5 offers the 

conclusion, followed by the future scope of the model. 

  

Figure 2. Image representing various factors influencing crop yield.

The motivation for the current study is the model’s ability to forecast crop production
accurately, which would benefit both farmers and government bodies since it helps people
to predict market trends, organize import and export activities, and reduce social costs.
Aside from major agricultural corporations and small farmers, agricultural enterprises bene-
fit from such forecasts because they may make informed decisions about crop management.
The contribution of the current study is listed below:

• Acquiring the crop-related data for training the model and analyzing the factors
influencing crop production.

• Performing Feature Engineering for localizing the features contributing to precise crop
yield analysis.

• Training the model and analyzing the hyperparameters to read the data’s insights adequately.
• The Spider Monkey Optimization technique optimizes the Multi-Layer Perceptron

model for analyzing the outcome.
• Analyzing the model’s performance with various evolution metrics such as sensitivity,

specificity, F1- Score, and accuracy measures.
• The prediction efficiency of the model is being analyzed against the other state of art

techniques used in crop yield prediction.

The other parts of the study are organized in the following fashion, and Section 2
presents the literature survey on various AI-driven models for crop yield prediction.
Section 3 offers the details of the proposed model with adequate details about the proposed
model and the optimization technique. Section 4 presents the results and statistical analysis
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and discusses the outcome of the proposed model. Section 5 offers the conclusion, followed
by the future scope of the model.

2. Literature Review

Machine learning (ML), a branch of AI that emphasizes learning, is a useful technology
that, depending on the input data, can provide a more accurate estimate of future crop
yields. Machine learning has the ability to analyze data for hidden patterns and connections.
ML includes various techniques such as Ridge Regression (RR) [4], Regression Tree (RT) [5],
Support Vector Machine (SVM) [6], XGBoost [7], Convolutional Neural Network (CNN) [8],
Random Forests (RF), and K-Nearest Neighbor (KNN) and Deep Neural Network have
all been used for crop detection and yield forecasting of specific crops in various con-
texts [9–11]. The literature on these strategies has been thoroughly examined and debated.
Khaki, S. et al. [12] used and evaluated various classification models such as Ordinary Least
Square (OLS) [13], Least Absolute Shrinkage and Selection operator (LASSO) [14], Back
Propagation Neural Network (BPNN) [15], Gaussian Process Regression (GPR) [16], Ensem-
bled Classifiers [17], Support Vector Machines Regression (SVR), RF [18], AdaBoost [19],
General Regression Neural Network (GRNN) [20], Multiswarm Firefly Algorithm [21]
and Deep Neural Network (DNN) [22] to estimate winter wheat production during the
growing season in the United States at the county level and identified AdaBoost as the
best approach.

Various hybrid and metaheuristic models are being used in forecasting crop yield,
and the model has proven to exhibit reasonable accuracy. A study on weed prediction
in wheat crops using drones was experimented with by El-Kenawy, et al. [23], and the
authors used a Metaheuristic Optimization technique that would result in better crop yield
and ensure the quality of the crop. Another study by Alexandros et al. [24] presented a
hybrid machine learning model based on CNN and DNN for crop yield prediction, and the
model yielded a Root-Mean-Square Error (RMSE) value of 0.266, Mean Square Error (MSE)
value as 0.017. Batool et al. [25] have used a hybrid machine learning model based on the
XGBoost regressor for tea crop yield prediction, and the model has shown a performance
with an RMSE of the value of 0.48 and MSE of 0.23. Shingade and Mudhalwadkar [26] have
proposed a hybrid model named deep-Q Elman neural network for crop yield prediction,
and the model has attained an overall accuracy of 99.44%. However, the hybrid models
sometimes need tremendous efforts in finetuning the model to best fit with the data.

Jambekar et al. [27] Regression analysis forecast crop yields of wheat, rice, and maize.
Multivariate Adaptive and Multiple-Linear Regression and Random Forest based Regres-
sion models are being used in the analysis, out of which the Random Forest Regression
has outperformed. On experimenting with various classification techniques such as RF, LR,
and DT, Vidhya et al. [28] have proven that more features boost accuracy. The included
dataset has additional variables for more accurate prediction, and it is observed that the RF
has exhibited better performance. Sangeeta et al. [29] have compared machine learning,
Decision Trees, Polynomial Regression, and Random forests. According to their technique,
Random Forest outperforms other yield prediction models.

Using DL models, including Convolutional Neural Networks [30], You et al. [31]
created an approach to estimating crop yields from satellite imagery. Using a CNN with a
Gaussian process component with a feature optimization strategy, this approach assessed
agricultural production for mostly poor nations throughout the year. Soybean data was
used for the study, combining three sources of information from the United States: sens-
ing data, climate data, and soil data. Their procedure proves that the Gaussian approach
was used to lower the RMSE. Accurate agricultural yield predictions that consider en-
vironmental factors’ effects might be made using ensembled methods. Classifiers based
on artificial neural networks (ANNs) and support vector machines (SVMs) were used by
Fegade and Pawar [32]. Crop predictions consider factors such as the actual quantity of
rainfall, temperature range, soil type, pH, and soil moisture. The entire database was culled
from the agriculture section of Maharashtra’s official website. The information was divided
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up across nine distinct agricultural regions. Farmers now have a dedicated portal to enter
crop forecasting data. The neural network was able to produce an 86.80% accurate forecast.

To make accurate projections of agricultural output, Tiwari and Shukla [33] utilized a
wide variety of geospatial data. One type of common precipitation index is the normalized
vegetation difference index. Using the BP-NN error standard, data from previous climates
were analyzed for useful information. This was achieved during training by having all char-
acteristics contribute to the yield point. The experiment relied more heavily on the accuracy
of its results thanks to the inclusion of geographical data collected in the Indian state of
Madhya Pradesh. The suggested model outperforms prior methods across a wide range of
assessment metrics. Some recent studies have shown that the accuracy and transparency
of crop production forecasts might be improved by combining ML algorithms with crop
simulation models. For three US Corn Belt states, RMSE was lowered from 20% to 8% when
crop simulation results were included in an ML model, as found by Shahhosseini et al. [34].
Table 1 summarizes some of the research conducted in the previous two years to predict
agricultural yields.

Table 1. Various studies in crop yield prediction.

Authors Year Crop Technique Outcome

Krithika K.M. et al. [35] 2022 Groundnut
• LASSO
• ElasticNet

• RMSE: 20.68%
• RRMSE: 20.66%

Amna Ikram et al. [36] 2022 General Analysis

• Ensemble
Learning (DT, NB,
SVM, KNN, RF)

• Accuracy = 97.45%

Kumar Raj and
Singhal Vivek [37] 2022 General Analysis • XGBoost • Accuracy = 92.0%

Vinson Joshua et al. [38] 2022 General Analysis

• BPNN
• SVM
• GRNN

• BPNN-RMSE
(kg ha−1): 296.07%

• SVM-RMSE (kg ha−1): 234.65
• GRNN-RMSE

(kg ha−1): 161.47%

Vignesh et al. [39] 2022 General Analysis

• Hybrid Deep
Belief Network
with VGG

• Accuracy = 98.0%
• F1 Score = 88.0%

Paudel et al. [40] 2021

Soft wheat
Spring barley

Sunflower
Sugar beet
Potatoes

• GB
• SVR
• KNN

• GB-RMSE (kg ha−1): 17.52%
• SVR (kg ha−1): 17.42
• KNN-RMSE (kg ha−1): 16.38

Bali et al. [41] 2021 Wheat

• RNN + LSTM
• ANN
• RF
• MLR

• RNN with LSTM-RMSE
(kg ha−1): 147.12

• ANN-RMSE
(kg ha−1): 732.14

• RF-RMSE (kg ha−1): 540.88
• MLR-RMSE (kg ha−1): 915.64

Rajagopal [42] 2021 General Analysis
• Discrete Hybrid

DBN-VGG RCSO

• Accuracy = 97%
• Recall = 94%
• MSE = 0.01%
• Precision = 97%
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Many machine learning approaches can handle massive datasets and provide great
prediction accuracy. However, since all these models are black boxes, the predictive ability
is influenced by conceptual framework and parameter tuning, making it impossible to
explain why predictions are right or incorrect [43]. We present a novel crop yield forecasting
model using the Multi-Layer Perceptron model that combines the strengths and avoids the
limitations of the previous techniques. A combinatorial Spider Monkey Optimization tech-
nique used with the model not only chooses the most revealing features but also discovers
their most prominent interactions; the contributions of these features and interactions to
crop production are then quantified using Multiple-Linear Regression.

3. Background

The current section of the manuscript discusses the pre-processing techniques associ-
ated with the dataset pre-processing for data normalization and the feature engineering
tasks that would assist in better prediction accuracy.

3.1. Data Normalization

The values must be normalized for the data processing procedure. Some normaliza-
tion just entails rescaling procedures to acquire values linked to another variable. When
crop population characteristics are known, we may reduce mistakes by making a few
easy modifications. After adjusting the mistakes, the population values may be regularly
distributed rather than randomly distributed. The z-score is obtained as the initial stage of
the normalization procedure. Equation (1) represents the z-score over the sample s.

Zs =
(s− µ)

σ
(1)

From the above equation, the variable µ represents the crop population, and the
notation σ denotes the standard deviation associated with the crop population. When
the crop population means and standard deviation are unknown, the standard score is
determined to use the mean and standard deviation of the sample, as shown in Equation (2).

z′s =
s− ŝ

σs
(2)

From the equation above, the notation ŝ designates the mean of the corresponding sample
and the notation σs designates the standard deviation of the sample being considered. The
resultant sequence will be transformed into a matrix form for correct variable assignment.

m = s×
(

sTs
)−1sT

(3)

The variance of the matrix is calculated as shown in Equation (4).

var = σ2(1− 1
i
− [(si − s2)/

i

∑
j=1

(sj − s−2)]) (4)

3.2. Feature Engineering

Feature engineering is one of the pivotal tasks in dealing with supervised learning
techniques. Focusing on relevant features would assist in getting better prediction accuracy
in a reasonable time. Various processes are being performed as part of feature engineering,
including identifying the significant features, discarding the irrelevant features, and assign-
ing the weights based on their significance. The weights are optimized over the epochs to
minimize the prediction loss. The entropy is considered in deciding the significance of the
feature in the prediction process.

Where the set of samples is identified as K = {X1, X2, X3 . . . Xm}, where a subset
of features are being considered for assessing the entropy, i.e., r ⊆ K, the subset being
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identified by K/r = {x1, x2, x3 . . . xm}. The entropy of the feature is denoted by the variable
es using the probability measure denoted by ρ(x) for sample x is measured using the
formula as shown in Equation (5)

es = ∑m
i=1 ρ(xi)log2ρ(xi)

−1 where xi ⊆ K/r (5)

In the current study, the relevant features are added to the list using the feature adder
function f+(x) as shown in Equation (6), and the features that are less relevant features are
being identified using a remover function f−(x) as shown in Equation (7) [44].

f+(x) = ( fn ∪ fn+1)
n

∑
i=1

es(i) +
m

∑
j=1

es(j) (6)

f−(x) = ( fn ∩ fn+1)
n

∑
i=1

es(i)−
m

∑
j=1

es(j) (7)

The weight of the feature fw are measures using Equation (8)

fw = ∑x ρ
(
x
∣∣αi,j

)
log

(
ρ(x
∣∣αi,j)

ρ(x)

)
(8)

From the above equation, the mutual information of occurrences x and α, on average,
with the expectation calculated concerning the posterior probability distribution of x, is
denoted by fw. fw is a measure of divergent a priori and a posteriori opinions about x-
useful feature values. A feature’s weight is described as the weighted mean of all associated
weights denoted by wmean as shown in Equation (9) [45].

wmean(i) = ∑j|i ρ
(
αij
)
· fw (9)

From the above equation, ρ
(
αij
)

denotes the probability that the feature i holds the
value of

(
αij
)
. As wmean(i) is biased toward features with multiple values, the total number

of samples corresponding to each feature value is smaller to allow for accurate learning.

4. Proposed Method

The proposed crop yield prediction model uses the Multi-Layer Perceptron model
with a modified flamingo search optimization technique. It is capable of solving difficult
non-linear issues in a feed-forward manner. It is capable of handling massive volumes
of data input. The power of Multi-Layer Perceptron networks resides in their theoretical
ability to fit many smooth, non-linear functions with excellent precision.

4.1. Multi-Layer Perceptron Model

An MLP design comprises an input node, hidden nodes, and an output vector. The
input layer assigns one individual input neuron to every input variable. The network’s
basic logic lies in the hidden layer. The output layer provides the predicted values that
assist in determining the crop yield. The MLP’s true computing capability is found in
the arbitrary sum of hidden units added between the input and output layers. Data goes
forward in an MLP, analogous to a feed-forward network. The neuron is trained using
the backpropagation approach. MLPs are meant for approximating integrals capable of
addressing non-linearly separable problems. MLPs are made out of neurons known as
perceptrons. A perceptron takes n features as input ip = {ip1, ip2, . . . , ipn}, and every
feature is assigned a weight, and the assigned weights for the features are to be a numerical
value. To utilize a perceptron, non-numeric input characteristics must be transformed into
numeric ones. For example, a feature vector with n potential values may be transformed to
n input features that reflect the existence of these values. These are dummy variables, whose
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power would be 0 if the corresponding value is absent. Figure 3 presents the architecture
diagram of the MLP-driven model.
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The input feature vector is fed into as an input to the function u, which calculates the
summation of the input characteristics, as shown in Equation (10).

I =
n

∑
x=1

ωiipx (10)

From the equation above, the notation ωi designates the weight associated with the
corresponding node i. The weights link the input and hidden layers that are identified
as ωih, and the weights that link the hidden layers with the output layer that are being
identified as ωhj. The threshold at the hidden layers is identified as Th. The network learns
the association among input units and expected output feedback by adjusting the weight
and bias parameters. As a result, the MLP network anticipated output for the hth neuron
with the mth the node can assess using the formula shown in Equation (11).

Ox(m) =
m

∑
h=1

ω2
h f
(
∑ ω1

ihgi(m) + Th

)
(11)

The function used in the above equation denotes the activation function, i.e., the
sigmoid function for assessing the fitness of the neuron whose value usually lies in the
range of [−1, 1] in the MLP model over a set of real numbers, the corresponding formula
for activation function is shown in Equation (12) [46].

f (η) =
1

1 + e−η (12)

The output Ox(m), could be fed as the input for the next corresponding sub-layer of the
hidden layer for further processing. The corresponding weight from sub-layers of the hidden
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layer is identified as ωh1 and the corresponding bias is identified as bhj, then the corresponding
outcome of the neuron is identified as Sh is determined using Equation (13) [47].

Sh =
m

∑
j=1

ωhj ×Ox(m) + bhj (13)

With the actual value yn in mind, the loss estimated is used in the network to adjust
the weights of the input neurons, the weights of the hidden nodes in the output layer, and
the predicted value y′n as shown in Equation (14).

E =
1
N

N

∑
n=1

(
yn − y′n

)2 (14)

4.2. Neuron Selection Using Spider Monkey Optimization

The neurons to be considered for the next phase of prediction processing are being
identified using the Spider Monkey Optimization by considering both the local and global
best. The search space’s initial fitness is set by randomly selecting the population’s members
during the initiation phase. The initial fitness values are assigned using the formula shown
in Equation (15).

Ni,j = Nx,j +
(

Ny,j − Nx,j
)
× rand(0, 1) (15)

From the above equation, the variable Nx denote the neurons categorized as the lower
bound and the variable Ny denotes the neurons of the upper bound over the jth dimension.
The rand( ) function is used for uniform random distribution of the computed fitness value
in the range of 0 and 1. The fitness values in each category (for both lower and upper bound)
are being updated concerning the local best value identified as Nxb and Nyb, respectively.
The values are updated using Equations (16) and (17), the same was repeated for all the
categories across the problem formulation [48].

Nij = Nij +
(

Nxb − Nij
)
× rand(0, 1) +

(
Nrx − Nij

)
× rand(−1, 1) (16)

Nij = Nij +
(

Nyb − Nij

)
× rand(0, 1) +

(
Nry − Nij

)
× rand(−1, 1) (17)

From the above equation, Nrx denotes the perturbation rate corresponding to the
category x, and Nry denotes the perturbation rate corresponding to the category y. The
values of local best are being updated concerning the globally best values, as shown in
Equation (18).

Nij = Nij +
(

NiG − Nij
)
× rand(0, 1) +

(
Nrj − Nij

)
× rand(−1, 1) (18)

From the above equation, the variable NiG designates the global best and the vari-
able Nrj Denotes the local best corresponding to the feature j. The neurons are carried
forward based on their fitness values, and at every iteration, the loss is measured, and the
hyperparameters are adjusted to maintain the minimum error ratio.

4.3. Dataset Collection

The data that is used in the current study is fetched from an open-source dataset,
the Crop Yield Prediction Dataset [49], which is fetched from the dataset of the Food and
Agriculture Organization (FAO) [50] and World Data Bank [51]. The dataset consists of
information on crop yield for divergent crop varieties such as cassava, maize, potatoes,
rice, sweet potatoes, sorghum, soybeans, and wheat. The crop yield data is from 1990
to 2013 across the countries such as Albania, Angola, Argentina, Armenia, Australia, Ba-
hamas, Bangladesh, Belarus, Belgium, Botswana, Brazil, Burkina Faso, Burundi, Cameroon,
Canada, Central African Republic, Chile, Colombia, Croatia, Denmark, Dominican Re-
public, Ecuador, Egypt, El Salvador, Eritrea, France, Germany, Ghana, Greece, Guatemala,
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Guinea, Haiti, Honduras, Hungary, India, Indonesia, Iraq, Ireland, Italy, Jamaica, Japan,
Kazakhstan, Kenya, Lebanon, Lesotho, Libya, Lithuania, Madagascar, Malawi, Malaysia,
Mali, Mauritania, Mauritius, Mexico, Morocco, Mozambique, Namibia, Nepal, The Nether-
lands, Nicaragua, Niger, Norway, Pakistan, Papua New Guinea, Peru, Poland, Portugal,
Qatar, Romania, Rwanda, Saudi Arabia, Senegal, Slovenia, South Africa, Spain, Suriname,
Sweden, Switzerland, Tajikistan, Thailand, Tunisia, Turkey, Uganda, Ukraine, United
Kingdom, Uruguay, and Zimbabwe. In the current study, the details of Saudi Arabia are
considered concerning the maize crop. The features involve area, crop, year, hectogram
per hectare (Hg/Ha), average rainfall (in mm), and the average temperature considered
as part of the evaluation. From the dataset, 8556 records concerning maize crops are used
for training, and records randomly chosen from 4121 are used for testing purposes from
a labeled dataset. The details associated with food consumption and crop growth in the
Kingdom of Saudi Arabia are shown in Figure 4.
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From the above figure, it can see that the maize crop has a significant impact on the
economy of the country. There has been incremental growth in the consumption of maize
in Saudi Arabia over the years. At the same time, the crop yield also has considerable
improvement over the years, which can address the growth of demand. The numerous
factors influencing crop productivity, such as the average temperature, average rainfall,
and hg/ha yield over the years, are shown as a heatmap in Figure 5, which depicts the
correlation among the variables in the dataset.
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4.4. Details of Implementation Platform

The current study on crop yield prediction is conducted on an independent computer
using the Jupiter notebook platform. Python programming language is used in coding
the implementation environment for the proposed MLP with the SMO technique. The
complete details of the implementation platform are shown in Table 2.

Table 2. Details of Implementation Platform.

Implementation Environment Details

Processor Intel Core i7-1260P (12 Gen)
Make HP Pavilion 15-EG2039TU

Architecture 64
Operating System Windows 11
Memory Allotted 3 GB

GPU Iris Xe
Coding language Python

Framework Jupiter Notebook v6.5.1
Libraries used sklearn, PyTorch, NumPy, pandas

5. Results and Discussion

In the current study, the Multi-Layer Perceptron model with the Spider Monkey
Optimization model relay on the historical data obtained from the Food and Agriculture
Organization and the World Data Bank considered in assessing the maize yield. Upon
fitting the model with the historical data in the training phase, the model is evaluated with
unforeseen data, i.e., the testing samples. The difference between the predicted value and
the actual values in the testing samples is considered the loss measure. The loss measures
are used to determine the performance of the model. The performance is measured using
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criteria such as Mean Absolute error (MSE), Root-mean-square error, R-Squared (R2), and
Mean Bias Error (MBE), which are used in the statistical analysis of the proposed model [52].
Averaging of the absolute differences among observed and projected values across the
dataset is determined by mean absolute error. The rooted value of the mean absolute
error is the RMSE [53], which is used in assessing the standard deviation of the residuals
and R-Squared, whose value is always less than one. This shows how much the model
explains the dependent variable’s variation. The formulas for the abovementioned metrics
are shown in Equations (19)–(21).

MAE =
1
S

S

∑
x=1

∣∣yx,act − yx,pre
∣∣ (19)

RMSE =

√√√√ 1
S

S

∑
x=1

(yx,act − yx,pre) (20)

R2 = 1− ∑
(
yx,act − yx,pre

)2

∑
(
yx,act − yx,avg

)2 (21)

MBE =
1
S

S

∑
x=1

(
yx,act − yx,pre

)
(22)

From the above equations, the variable yx, act is the actual value of the corresponding
variable and the variable yx,pre denoted the predicted value of the corresponding variable.
It is desired that the value of

∣∣yx,act − yx,pre
∣∣ must be minimum. The variable yx,avg denotes

the averages of values of the corresponding variable. The metrics mentioned above are
used in the statistical analysis of the model suggested concerning crop yield prediction.
The scatter plot in Figure 6 shows the trade-off between the actual and predicted values of
the proposed MLP with SMO and MLP alone.
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Figure 6. (a) Prediction outcome of the MLP model alone, (b) prediction outcome of the MLP with
SMO technique.

It can be observed from Figure 6 that the proposed Multi-Layer Perceptron model with
the Spider Monkey Optimization technique has outperformed compared to the Multi-Layer
Perceptron model alone. When evaluating the model’s efficacy, comparable cutting-edge
methods are used for comparisons such as LASSO, XGBoost, LightGBM, RF, LR, SVM,
Optimized weights-based ensemble (OWE) model, BPNM, GRNN, and the obtained values
are shown in Table 3 and the corresponding graphs are presented in Figure 7.
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Table 3. Performance comparison concerning RMSE, R2, and MBE metrics.

Approach RMSE (Mg/Ha) R2 MBE (Mg/Ha)

LASSO [34] 1.11 0.67 −0.48
LightGBM [34] 1.0 0.75 −0.06
XGBoost [34] 0.99 0.75 −0.13

RF [34] 1.12 0.68 −0.14
LR [34] 1.12 0.68 0.03

OWE [34] 0.99 0.75 −0.06
LSTM Model with

Adam [54] 0.02 0.96

MLP alone 0.13 0.96 −0.10
MLP with SMO 0.11 0.98 −0.19
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The above table demonstrates that the intended MLP with SMO has outperformed
with minimal RMSE and higher R2 values among the models that are being considered
for statistical analysis. To make the model evident, the proposed model is also being
evaluated concerning the mean absolute error, as shown in Table 4. The obtained values
of the proposed approach and other state-of-the-art models are graphically represented
in Figure 8.
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Table 4. Performance comparison concerning RMSE, R2, and MAE metrics.

Approach RMSE (Mg/Ha) R2 MAE

BPNM [38] 0.29 0.89 0.21
SVM [38] 0.23 0.93

GRNN [38] 0.16 0.97 0.08
SVR [55] 0.06 0.83 0.17
GPR [55] 0.05 0.90 0.13
ANN [55] 0.17 0.92 0.17

RF [55] 0.17 0.89 0.14
DT [56] 0.54 0.42 1.21
LR [56] 0.49 0.53 1.41
RF [56] 0.36 0.75 0.41

ANN [56] 0.37 0.62 0.22
Gradient Boosting [57] 0.53 0.54 0.41

DRL [57] 0.17 0.87 0.13
MLP with SMO 0.11 0.98 0.09

It can be observed from the figures that are shown above, the proposed MLP with
SMO model has resulted in minimal RMSE and MAE values compared to that of the other
methods considered in the evaluation process. The model exhibited an exceptionally high
R2 value. The model is further evaluated using the 5-fold cross-validation for training
RMSE, validation RMSE, training correlation, and validation correction percentages con-
cerning the yield prediction for the MLP model alone and MLP with the SMO technique.
The outcomes of the results are shown in Table 5 below, and the graphs generated are
shown in Figure 9.

Table 5. Comparison of training and validation metrics of the proposed model.

Approach Training RMSE Validation
RMSE

Training
Correlation

Validation
Correlation

MLP 0.12 0.14 93.9% 82.2%
MLP with SMO 0.09 0.11 95.4% 86.9%
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The proposed model is being further statistically analyzed using standard evaluation
metrics such as the Wilcoxon signed-ranks test along with the wins and losses of the features
that could be made to make the study more evident and explainable. The corresponding
values of wins and losses with a standard deviation of 0.15 over 2139 records for MLP
alone and MLP with SMO are presented in Table 6, and the Wilcoxon values are presented
in Table 7.

Table 6. Wins and Loses instances with MLP and MLP with SMO.

MLP MLP with SMO

Wins (+) 2000 2061
Loses (−) 139 78
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Table 7. Wilcoxon signed ranks for MLP and MLP with SMO.

MLP MLP with SMO

Average error 0.197 0.183
Average Fitness 0.271 0.259

Best Fitness 0.187 0.165
Worst Fitness 0.292 0.274

R+ 51 51
R− 0 0

Significant(alpha) 0.05 0.05

The proposed approach has proven a reasonable efficiency concerning various eval-
uation parameters such as RMSE, R2, MAE, MBE, and correlation. The current study’s
statistical analysis is limited to the MLP model alone and MLP with SMO. The feature
engineering process has not been considered in the evaluation process of divergent feature
sets. The initial weights contributed to faster convergence of the model, but the impact of
initial weights is not being analyzed in the current study. The current study is confined
to the metrological factors that are being recorded in history, and the analysis is limited
to recorded data. The changes that happen over the seasons and the crop demand for
metrological changes as it keeps growing are not considered. Involving those underlying
metrological factors might make the problem a complex temporal model, yet the models
would yield a precise outcome in line with the changing scenarios.

The current model would work as a reference framework for crop yield prediction.
Various studies on similar aspects working on machine models would assist the agriculture
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department, as the crop yield is largely dependent on the various factors that would change
dynamically and would be challenging for precise predictions of the yield, even for the
machine learning approaches. The other crucial factors are crop demand changes as it keeps
growing, and the changes in metrological factors over the seasons and draught situations
would keep the prediction models in a tough situation. There is a demand for sustainable
models that take all the factors mentioned above into consideration.

6. Conclusions

The proposed study on the prediction of maize crop yield in the Saudi Arabia region
using the Multi-Layer Perceptron model with Spider Monkey Optimization, the model has
exhibited a promising performance in accurately forecasting the crop yield and evaluating
the model with various metrics such as RMSE, R2, MAE, and MBE the model has resulted in
better performance than many states of art models. The proposed model makes predictions
based on features such as average rainfall, average temperature, and Hg/Ha values in
assessment. The data about the crop yield prediction would assist the farmers and the
government in planning the imports and making the ecosystem ready for storing and
processing the harvested crop. The model has exhibited a lower prediction error, with
a reasonable training time. However, the proposed model has consumed a considerable
amount of time for feature engineering, which could be considered one of the potential
limitations of the proposed model, which has to be addressed in future studies.

Future studies can evaluate the model across divergent crops over distinct datasets.
The number of features being considered for the yield analysis must be increased to increase
the diverse factors. In contrast, in the current study, features such as fertilizer consumption,
soil moisture, nutrition level, soil pH, water pH, and many other crucial features are not
considered. There is a need to design intelligent machine models capable of working with
minimal training, resulting in working with optimized resources. However, we think our
study significantly contributes to the digital revolution in agriculture, helping us optimize
agriculture and generate more with fewer resources. In future work, the metrological
factors that would keep changing over the seasons and the demand for various underlying
factors would result in a precise outcome. There is demand for models that could keep
track of the changes in the crop as it keeps growing, as intermediator data is also crucial in
making precision predictions.

Funding: The paper funding was performed by the Deputyship for Research and Innovation, Ministry
of Education, Saudi Arabia, through project number IFT20157.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author extends his appreciation to the Deputyship for Research and Inno-
vation, Ministry of Education in Saudi Arabia, for funding this research work through the project
number (IFT20157).

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Al-Adhaileh, M.H.; Aldhyani, T.H. Artificial intelligence framework for modeling and predicting crop yield to enhance food

security in Saudi Arabia. PeerJ Comput. Sci. 2022, 8, e1104. [CrossRef] [PubMed]
2. Jayagopal, P.; Muthukumaran, V.; Koti, M.S.; Kumar, S.S.; Rajendran, S.; Mathivanan, S.K. Weather-based maize yield forecast in

Saudi Arabia using statistical analysis and machine learning. Acta Geophys. 2022, 70, 2901–2916. [CrossRef]
3. Elzaki, R.M.; Elrasheed, M.; Elmulthum, N.A. Optimal crop combination under soaring oil and energy prices in the kingdom of

Saudi Arabia. Socio-Econ. Plan. Sci. 2022, 83, 101367. [CrossRef]
4. Gana, R. Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients? Mathematics

2022, 10, 3057. [CrossRef]

http://doi.org/10.7717/peerj-cs.1104
http://www.ncbi.nlm.nih.gov/pubmed/36262130
http://doi.org/10.1007/s11600-022-00854-z
http://doi.org/10.1016/j.seps.2022.101367
http://doi.org/10.3390/math10173057


Sustainability 2023, 15, 3017 18 of 19

5. Botana, I.L.-R.; Eiras-Franco, C.; Alonso-Betanzos, A. Regression Tree Based Explanation for Anomaly Detection Algorithm.
Proceedings 2020, 54, 7. [CrossRef]

6. Naga Srinivasu, P.; Srinivasa Rao, T.; Dicu, A.M.; Mnerie, C.A.; Olariu, I. A comparative review of optimisation techniques in
segmentation of brain MR images. J. Intell. Fuzzy Syst. 2020, 38, 6031–6043. [CrossRef]

7. Guleria, P.; Naga Srinivasu, P.; Ahmed, S.; Almusallam, N.; Alarfaj, F.K. XAI Framework for Cardiovascular Disease Prediction
Using Classification Techniques. Electronics 2022, 11, 4086. [CrossRef]

8. Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Assessment of Crop Yield Prediction Capabilities of CNN Using Multisource Data.
In New Developments and Environmental Applications of Drones; Lipping, T., Linna, P., Narra, N., Eds.; Springer: Cham, Switzerland,
2022. [CrossRef]

9. Feng, P.; Wang, B.; Li Liu, D.; Waters, C.; Xiao, D.; Shi, L.; Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid
approach using a biophysical model and machine learning technique. Agric. For. Meteorol. 2020, 285–286, 107922. [CrossRef]

10. Nyéki, A.; Neményi, M. Crop Yield Prediction in Precision Agriculture. Agronomy 2022, 12, 2460. [CrossRef]
11. Yli-Heikkila, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable Crop Yield

Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sens. 2022, 14, 4193. [CrossRef]
12. Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [CrossRef] [PubMed]
13. Xu, J.; Tang, S.; Li, P.; Zhang, H. Empirical Study on the Grain Output Based on Regression Analysis. J. Sensors 2022, 2022, 2567790.

[CrossRef]
14. Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield

prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [CrossRef] [PubMed]
15. Wang, X.; An, S.; Xu, Y.; Hou, H.; Chen, F.; Yang, Y.; Zhang, S.; Liu, R. A Back Propagation Neural Network Model Optimized

by Mind Evolutionary Algorithm for Estimating Cd, Cr, and Pb Concentrations in Soils Using Vis-NIR Diffuse Reflectance
Spectroscopy. Appl. Sci. 2020, 10, 51. [CrossRef]

16. Maritz, J.; Lubbe, F.; Lagrange, L. A Practical Guide to Gaussian Process Regression for Energy Measurement and Verification
within the Bayesian Framework. Energies 2018, 11, 935. [CrossRef]

17. Guleria, P.; Ahmed, S.; Alhumam, A.; Srinivasu, P.N. Empirical Study on Classifiers for Earlier Prediction of COVID-19 Infection
Cure and Death Rate in the Indian States. Healthcare 2022, 10, 85. [CrossRef]

18. VGeetha, V.; Punitha, A.; Abarna, M.; Akshaya, M.; Illakiya, S.; Janani, A. An Effective Crop Prediction Using Random Forest
Algorithm. In Proceedings of the 2020 International Conference on System, Computation, Automation, and Networking
(ICSCAN), Puducherry, India, 3–4 July 2020; pp. 1–5. [CrossRef]

19. Koduri, S.B.; Gunisetti, L.; Ramesh, C.R.; Mutyalu, K.V.; Ganesh, D. Prediction of crop production using adaboost regression
method. J. Physics Conf. Ser. 2019, 1228, 012005. [CrossRef]
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