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Accurately identifying bone fractures from the X-ray image is essential to prompt timely and 
appropriate medical treatment. This research explores the impact of hyperparameters and data 
augmentation techniques on the performance of the You Only Look Once (YOLO) V10 architecture for 
bone fracture detection. While YOLO architectures have been widely employed in object detection 
tasks, recognizing bone fractures, which can appear as subtle and complicated patterns in X-ray 
images, requires rigorous model tuning. Image augmentation was done using the image unsharp 
masking approach and contrast-limited adaptive histogram equalization before training the model. 
The augmented images assist in feature identification and contribute to overall performance 
of the model. The current study has performed extensive experiments to analyze the influence 
of hyperparameters like the number of epochs and the learning rate, along with the analysis of 
the data augmentation on the input data. The experimental outcome has proven that particular 
hyperparameter combinations, when paired with targeted augmentation strategies, improve the 
accuracy and precision of fracture detection. It is observed that the proposed model yielded an 
accuracy of 0.964 on evaluation over the augmented data. The statistical analysis of the classification 
precision across the augmented and raw images is observed as 0.98 and 0.95, respectively. In 
comparison with other deep learning models, the empirical evaluation of the YOLO V10 model clearly 
demonstrates its superior performance over conventional approaches for bone fracture detection.
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The human body consists of 206 bones that vary in size, shape, and complexity. Bone fractures frequently occur 
due to physical impact and represent a break in the bone’s continuity. These fractures can take various forms, 
such as transverse, oblique, spiral, and comminuted fractures, and are generally categorized as either open or 
closed1. The closed fractures are especially hard to recognize as the bone would be damaged from the inside, 
and the skin would be intact. Early and precise identification of fractures can significantly influence treatment 
decisions, ultimately improving patient outcomes2. In some cases, bone fractures are also caused by diseases like 
osteoporosis, where the bones are more prone to damage. Hence, timely identification of the abnormality and 
appropriate treatment is needed for better recovery of the patient3.

Bone fracture detection relies on various medical imaging modalities. X-rays are the most commonly 
used imaging modality for detecting bone fractures because they are available4. , ability to rapidly view bone 
structures. X-ray imaging works by sending radiation through the body, where denser structures, such as bones, 
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absorb more radiation and show white on the image. The X-ray images are sometimes challenging to process due 
to the variations in the patient anatomy, positioning, luminance, and divergent calibration of the devices. These 
are some of the common challenges that are faced in fracture detection from X-ray images5. Data augmentation 
techniques are commonly applied before the data is fed to train the machine-intelligent model to mitigate 
these issues. This helps the model generalize better over the unseen data. The deep learning (DL)6 models are 
extensively used in the classification and localization of bone fractures from X-ray images7,8. The current study 
uses YOLO version 109 to localize bone fractures from the images. The current study tries to address some of the 
research questions associated with DL models in bone fracture detection.

RQ 1 To analyze the role of an object detection model like YOLO for the recognition of the type of bone fracture 
from the X-ray image.

RQ 2 Do the data augmentation approaches like image contrast enhancement and sharpening have any impact 
on the precision of the object recognition model.

RQ 3 Does the hyperparameter tuning, like the number of epochs and learning rate, impact the object recog-
nition performance.

Machine intelligent models are widely used in the classification of X-ray images to identify abnormalities. 
Their systematic feature extraction capabilities enable the learning of complex visual patterns, including bone 
structure, fracture lines, and tissue abnormalities. However, there is still a necessity for models that are faster 
and precise enough to accurately recognize the subtle fractures from ordinary X-ray images10. Among these, 
the YOLO models are considered to be the most efficient model for abnormality detection with reasonable 
computational overhead. The current study performs various operations ranging from data augmentation to the 
class probability for each class of objects, represented in Fig. 1. Moreover, the dataset considered in the current 
study consists of all categories of the bone fractures include simple fracture, compound fracture, comminuted 
fractures, greenstick fractures, and stress fractures. The model is trained with divergent data with different 
categories of the bone fractures across all the body parts. The entire dataset is utilized for both training and 
validation of the YOLO model. Using the full dataset in experimentation enhances the model’s ability to learn 
and adapt to the dynamic aspects of X-ray images, leading to improved performance.

The YOLO V10 model is comparatively faster in performing the classification, when compared to that 
of the earlier versions of YOLO. YOLO V10 efficiently handles smaller objects with a better feature pyramid 
network. The other major changeover is that the proposed model can handle the variable size input and images 
of divergent natures11. Furthermore, the YOLO model is being evaluated concerning data augmentation and 
divergent hyperparameters. This could ultimately lead to improvised accuracy and precision working with X-ray 
images. The following are the contributions of the study.

• Data augmentation is performed on the bone X-ray images to scale the input images, sharpen them, and 
enhance the contrast of greyscale images. The processed images are used with the model for training, and 
validation.

• The YOLO V10 model is being evaluated with standard hyperparameters to recognize bone fractures from 
the X-ray images.

• The YOLO model is analyzed concerning divergent hyperparameters in the process of identifying bone frac-
tures.

Fig. 1. The block diagram of the YOLO V10-based bone fracture detection module.
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• The ablation study is performed on the YOLO V10 model without performing the data augmentation to ana-
lyze the robustness of the model in handling the raw data.

The rest of the manuscript is organized in the following manner. Section  2 presents the literature on deep-
learning models used in bone fracture detection. Section 3 presents the background section, which outlines the 
details of the dataset, implementation environment, and the standard hyperparameters used in the evaluation 
process. Section 4 presents the YOLO V10 model and various components of the architecture. Section 5 outlines 
the results and the statistical analysis of the resultant outcome. Finally, Sect. 6 summarizes the findings of the 
study.

Literature review
The current section presents the various existing models that are used in bone fracture detection and their 
challenges in the precise classification of the input data. Various machine-intelligent models are extensively 
used in classifying X-ray images for identifying bone fractures12,13. Some conventional approaches, such 
as neural networks (NN), Support Vector Machine (SVM), and decision tree (DT)14, are also being used in 
the classification process. Later, the deep learning model based on the convolutional neural network (CNN), 
Region-based Convolutional Neural Networks (R-CNN) was extensively used to identify bone fractures from 
the X-ray images. Furthermore, several researchers have investigated the use of data augmentation and transfer 
learning to enhance model performance, particularly in cases with limited labeled data. The rising amount of 
data demonstrates the potential of machine-intelligent approaches to aid clinical decision-making and enhance 
the treatment processes.

A study by Dlshad Ahmed, Kosrat, and Roojwan Hawezi15, analyzing a dataset of 270 X-ray images for 
identifying bone fracture using the machine learning algorithms like Naïve Bayes, Decision Tree, Nearest 
Neighbors, Random Forest, and SVM algorithm achieved the highest accuracy, ranging from 0.64 to 0.92 across 
different methods. Another study by S. Karimunnisa et al.16 automatic X-ray fracture detection method using a 
back propagation neural network (BPNN) combined with conservative smoothing filtering and segmentation 
using the Canny edge approach, achieving an accuracy of 91%, which outperforms SVM and other techniques. 
A study by A. Y. Yang et al.17 has evaluated a two line-based fracture detection technique, Standard line-based 
detection, and Adaptive Differential Parameter Optimized (ADPO) algorithm, which have been developed to 
identify fractured lines in X-ray images by extracting features that differentiate fractured from non-fractured 
lines. The ADPO scheme optimizes the Probabilistic Hough Transform parameters for better detection, 
achieving an average accuracy of 72.89%, compared to 71.57% for the Standard scheme, and both methods 
utilize an Artificial Neural Network (ANN) for classification.

Ma, Yangling, and Yixin Luo18 have proposed a Crack-Sensitive Convolutional Neural Network (CrackNet), 
which utilizes a two-stage system combining Faster R-CNN to detect 20 different bone regions in X-ray images, 
followed by CrackNet to determine if these regions are fractured. Tested on 1,052 images, including 526 fractured 
cases, the system achieved an accuracy of 90.11% and an F-measure of 90.14%, outperforming other two-stage 
systems. A transfer learning approach utilizing a Faster R-CNN19 DL model with a Region Proposal Network 
(RPN) was implemented for fracture detection and classification. The model, retrained using Inception v2 
architecture on 50 X-ray images over 40,000 steps, achieved an overall accuracy of 94% in classifying images as 
fractured or non-fractured and accurately locating fractures with rectangular bounding boxes. Another study has 
deployed the Deep Neural Network (DNN)20 model, developed to classify fractured and healthy bones, with data 
augmentation techniques applied to address overfitting on a small dataset. Using Softmax and Adam optimizers, 
the model achieved a classification accuracy of 92.44% using 5-fold cross-validation and over 95% and 93% 
accuracy on 10% and 20% test data. In another study on Combining a Growing Neural Gas (GNG) network21 
with eight VGG-inspired models, the method achieves superior sensitivity (95.86%) and specificity (99.63%) for 
bone classification, and 92.50% and 92.12%, respectively, for abnormality detection, while significantly reducing 
computation time compared to state-of-the-art models. Another study employs a MobileNet CNN model22 to 
classify bone fractures with 98% accuracy using a dataset of 4906 X-ray images, demonstrating the effectiveness 
of deep learning in early and accurate fracture detection, which is crucial for improving patient outcomes.

Some of the most recent advancements in object detection using the DL models, like YOLO models, are 
used in bone fracture detection. A study on the YOLO Model compares one-stage and two-stage deep learning 
architectures for detecting four types of fractures using well-annotated datasets, focusing on YOLO variants, 
SSD, Faster-RCNN, and Mask-RCNN models. The customized YOLOv7-ATT model23, enhanced with an 
attention mechanism and an Enhanced Intersection of Unions (EIoU) loss function, achieved superior 
performance, with a mAP of 86.2% on the FracAtlas dataset, demonstrating its potential for clinical fracture 
detection. In another study on YOLO, A hybrid model combining YOLO-Neural Architecture Search(NAS)24, 
EfficientDet, and DETR3 was developed to detect hand bone and joint fractures in X-ray images using a dataset 
of 4,736 images classified into six types. The model’s performance was evaluated by comparing it with existing 
algorithms, demonstrating its effectiveness in accurate fracture detection. The proposed YOLO-NAS model has 
outperformed the other DL models with an accuracy of 98.1%. The details of various YOLO versions concerning 
the number of parameters, backbone network, and speed are summarized in Fig. 2.

There is a significant demand for a DL approach that can precisely classify the abnormality from the low 
resolution and raw X-ray images25, where the YOLO version 10 is considerably superior over the earlier 
versions of YOLO26. YOLO V10 model would no longer use the non-maximum suppression (NMS) during 
post-processing. Rather, it uses dual label assignments to provide a harmonic combination of accuracy and 
speed by guaranteeing that the model stays computationally efficient while collecting crucial features for precise 
classification.
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Furthermore, various studies used in bone fracture detection, along with their observations are summarized 
in Table 1.

Background
The current section of the manuscript discusses the various aspects, like the dataset used in the current study and 
the data augmentation techniques like sharpening and contrast enhancement of greyscale images. The details of 
the implementation environment are also discussed in the current section of the manuscript. The components 
of the image pre-processing are illustrated in Fig. 3.

Approach Dataset Observations Remarks

Faster R-CNN27 Gazi University Hospital’s dataset of 
wrist X-ray images

The model has yielded an average precision 
of 0.61 and an average recall of 0.36

Faster R-CNN is computationally expensive due to its two-stage 
detection process, which includes the region identification followed by 
an object detection, which makes it slower for real-time applications.

Dynamic 
R-CNN27

Gazi University Hospital’s dataset 
of wrist X-ray images dataset of 
2075 images

The model has yielded an average precision 
of 0.77 and an average recall of 0.41

The dynamic R-CNN model is also computationally expensive and 
susceptible to overfitting of the model. Lesser generalizability in case of 
smaller-size datasets.

Ensembled DL 
(MobileNetV2, 
Vgg16, 
InceptionV3, and 
ResNet50)28

Mura-v1.1 dataset has 6,542 
radiographs images.

The model yielded an accuracy of 0. 92 and 
a precision of 0.91

The combination of all models makes it challenging to interpret 
the decision process and complex hyperparameter tuning process. 
Moreover, the ensemble models need larger and diverse datasets for 
desired performance.

MobileNet V229 Bone fracture dataset, Mendeley 
Data V1. The model has yielded an accuracy of 93.5% MobileNet V2 model is a lightweight model, it finds it difficult to capture 

complex features and subtle details in high-resolution X-ray images

VarifocalNet 
Feature Pyramid 
Network30

Dataset with 823 hip radiographs 
images across 150 subjects.

The model has yielded an accuracy of 0.94, 
sensitivity of 0.95, and specificity of 0.94

The VarifocalNet fails to handle the class imbalance and is susceptible to 
overlapping objects in complex scenes.

MobLG-Net31

Fracture detection using an x-ray 
images dataset that consists of 
9,463 X-ray images of fractured and 
normal bones

The model has attained an accuracy of 0.97 
when evaluated with random forest.

MobLG-Net struggles with balancing speed and accuracy, especially for 
efficiently detecting small or subtle objects.

CrackNet32 Radiopaedia dataset with 3053 X-ray 
images.

The model has attained an accuracy of 0.883 
accuracy and a precision of 0.890

CrackNet struggles with detecting fine or irregular cracks, and requires 
large datasets. The model performs poorly on noisy images.

Table 1. Various existing models are used in bone fracture detection.

 

Fig. 2. A summary of various versions of the YOLO model is provided.
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Dataset description
The current study uses the Bone Fracture Detection: Computer Vision Project dataset33, which is the fourth 
version of the bone fracture detection daoon dataset, an open-access dataset by roboflow universe search. 
The complete dataset consists of 4148 images of various body parts that includes wrist, arm, finger, leg, and 
ankle fracture images distributed across seven classes that include Elbow Positive, Fingers Positive, Forearm 
Fracture, Humerus Fracture, Shoulder Fracture, and Wrist Positive. The dataset is further splitted as the 
training, validation, and testing datasets in a ratio of 88,8 and 4 percentages respectively, by the dataset owner. 
Resultantly, 3631 images are associated with the training set, 348 images are used to validate the model, and 169 
for testing the model’s efficiency. The images in the dataset are raw greyscale images, where no additional data 
augmentation or pre-processing is performed on them. The images are annotated with the ground truth, i.e., 
with the corresponding class label. The split of the dataset is not being modified in the current study, the same 
split is considered for evaluation. The distribution of the classes is shown in Fig. 4, where it can be observed that 
there are more instances for the fingers positive class and significantly less samples in wrist positive class, which 
indicates the dataset is imbalanced. The sample images in the dataset are presented in Fig. 5.

Data augmentation
The original data in the dataset is being processed to enhance the contrast and edge-related information by 
sharpening the image. The edge-related enhancements are done through the Unsharp Masking mechanism34, 
and contrast enhancement is done through the Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
approach35. A detailed explanation of each model is presented in the sub-section discussed below. Histogram 
equalization is performed across the entire dataset, which would assist in better classification by suppressing the 
noise and improvising the local contrast of the image regions. Affine transforms are performed across 40% of 
an overall dataset by transforming 40% in each portion of the dataset. The same has been presented in Fig. 6, 
showing the number of instances being processed. Affine transforms would improve the model generalization 
by dynamic feature selection by transforming the image.

Image unsharp masking approach
Image unsharp masking is one of the most widely used image sharpening techniques. The approach adds a 
scaled version of the image’s high-frequency components, like the edge, back to the original image. The high-
frequency data is derived by subtracting a blurred image variant from the original. The outcome highlights 
regions of intensity change in the image, resulting the edges looking sharper36. The output image denoted by Os 
by updating the image intensity value I  is shown in Eq. (1).

 Os (x, y) = I (x, y) + γ (I (x, y) − Ib (x, y)) (1)

Fig. 3. The workflow of the YOLO V10 model for bone fracture detection.
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From the equation, the notation I (x, y) designates the intensity of the original greyscale image at the coordinated 
(x, y). The Ib (x, y) designates the intensity of the blurred image at the coordinates (x, y), and the notation γ  

is the scaling factor that determines the magnitude of the sharpening. The corresponding input image and the 
output image, along with the histogram values of intensities, are presented in Fig. 7. In this approach, a blurred 
version of the original image is removed to highlight the edges, and the result is then returned to the original 
image.

Contrast-Limited adaptive histogram equalization
The low-contrast nature of X-ray images makes it difficult to recognize minor fractures and inconsistencies. 
So, contrast augmentation is required. Traditional histogram equalization changes the contrast of a whole 
image by distributing intensity values to obtain a uniform histogram. But, this approach may result in over-
enhancement and noise amplification, particularly in areas with uniform brightness. Adaptive Histogram 
Equalization (AHE)37 improves image contrast by partitioning the image into smaller segments and performing 
histogram equalization to each segment independently. This technique enhances local contrast much better 
than a simple histogram equalization approach but may considerably increase noise in areas with poor contrast. 
Contrast limiting (CL) will restrict the contrast improvement for each tile to prevent noise amplification. When a 
histogram bin’s height exceeds the specified threshold, extra pixels are reallocated across the histogram, limiting 
the contrast. The contrast-limited adaptive histogram equalization approach would limit the excessive noise 
enhancement in the lower-intensity regions.

Let the AHE be applied over the image intensity value designated by I, which is divided into p × q non-
overlapping tiles in the image. The local histogram is calculated for every region, and the intensity values are 
adjusted, as shown in Eq. (2).

 I ′ (x, y) = CD (I (X, Y )) × (N − 1) (2)

From the equation, the function CD () is the cumulative distribution function over the local histogram, the 
(x, y)is the pixel coordinates and I (X, Y ) is the intensity of the original image, and I ′ (x, y) is the calculated 

intensity value. CLAHE restricts contrast enhancement to avoid excessive noise amplification. The maximum 
height of the histogram bins is restricted to a set clip limit MT . Excess pixels are redistributed throughout all 

Fig. 4. Graph representing the distribution of classes in the dataset.
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bins, preserving the histogram level across the image pixels. The pixel adjustment is done based on the following 
criteria as shown in Eq. (3).

 
H′ b =

{
MT if Hv > MT

Hb Otherwise  (3)

From the equation, the Hb actual histogram of the bin b and H′ b designates the updated histogram after 
the clipping. The CLAHE approach uses bilinear interpolation (BI) to deal with the discontinuities at the tile 
boundaries. BI combines the histograms of the adjacent tiles. Let us assume the pixel p at the coordinates (x, y)
, the measure of interpolated intensity II (x, y) is calculated as shown in Eq. (4).

 II (x, y) = (1 − ∆ x) (1 − ∆ y) Ia + ∆ x (1 − ∆ y) Ib + (1 − ∆ x) ∆ yIc + ∆ x∆ yId (4)

Fig. 5. Sample images that are obtained from the dataset.
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From the equation, the ∆ x and ∆ y values designate the relative distances of the pixel from the tile boundaries. 
The notations Ia, Ib, Ic and Id are the equalized value of their four surrounding tiles. The resultant outcome 
and the associated histogram values of the pixels are shown in Fig. 8.

Experimental setup
The current section of the manuscript outlines the experimental setup used in the current study. The execution 
is performed on the online platform based on Kaggle for training and evaluation of the model. The details of 
the standalone computer, the packages used, and the details of the graphics processing unit (GPU) used in the 
current study are in Table 2. All the experimentation analysis is done over the same platform in the Kaggle using 
the same GPU configuration.

Methodology and experimental design
The current section of the manuscript discusses the YOLO v10 model for classifying the abnormalities in the 
X-ray images to localize the fractures in the bones. The model has various components, like the backbone and 
neck.

Backbone component
The backbone component of the YOLO V10 model used the Cross Stage Partial Network (CSPNet)38, enhancing 
the model’s computational efficiency and accuracy. CSPNet minimizes redundancy in feature maps by 
facilitating a more efficient gradient flow, which is especially beneficial in deep learning models aimed at object 
detection. This framework is particularly efficient in balancing computing efficiency by retaining knowledge at 
more profound levels of the model. CSPNet reduces the number of parameters and processes to just a feature 
map segment, resulting in a lightweight network39. CSPNet integrates features from both shallow and deep 
layers, enhancing the model’s capacity for effective object detection via more complex and diversified feature 
representations. The corresponding figure of CSPNet architecture is shown in Fig. 9.

Neck component
The neck component of the YOLO V10 model uses the Path Aggregation Network (PAN)40 for the purpose of 
a multi-scale feature fusion technique. PAN is an upgrade of feature pyramid networks (FPN) that incorporates 
a bottom-up approach with the conventional top-down pathway used in FPNs. This framework facilitates a 
bidirectional exchange of information, integrating high-level semantic attributes from deeper levels with low-
level spatial data from shallower layers. The multiscale feature aggregation (MSFA) is used to detect objects 
of varying sizes, it records both low-level spatial information and high-level semantic information. The PAN 
model consists of bottom-up and top-down approaches, allowing cross-scale connections between features. The 

Fig. 6. Dataset Samples and number of instances used in data augmentation.
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top-down approach would localize the features from the deeper layer to shallow layers. Similarly, the bottom-
up approach would localize the features from the shallow layers that are propagated upwards to recognize the 
semantic features. The neck components of YOLO V10 are illustrated in Fig. 10.

The top-down feature map is represented by f td
x  over the layer x evaluated by up-sampling the feature map 

from the previous layer f td
x+1, which is combined with the current layer as shown in Eq. (5).

 f td
x = Bilinear_Upsample

(
f td

x+1
)

+ fx (5)

Similarly, the bottom-up stage improves feature propagation by aggregating information in the opposite way. 
The corresponding formula is presented in Eq. (6), over the feature next stage identified by fbu

x−1.

 fbu
x = P ooling_downsample

(
fbu

x−1
)

+ f td
x  (6)

The features of both the top-down feature map and the bottom-up stage are being concatenated to retain both 
fine details and semantic context, as shown in Eq. (7).

 f ′ x = Concat(f td
x , fbu

x ) (7)

After concatenation, 1 × 1 convolution is used to reduce dimensionality and improve the combined feature maps. 
PAN architecture reduces redundancy, allowing for computational efficiency without losing the accuracy.

Head component
The head component is the place where the boundary box and class classification and approximates the confidence 
score41. This head component consists of the one-to-one head and the one-to-many head. The corresponding 
figure of the head component is presented in Fig. 11.

The one-to-one head would assist in assigning the anchor box to each unique ground truth object in the 
image. The one-to-one head is efficient in real-time object detection as it minimizes the overlap of the bounded 
region, reducing the computing cost of managing redundant detections. The one-to-one head assigns each 
anchor box directly to a single bounding box to the object. The mathematical formulation for each anchor box 

Fig. 7. The input and output images and histogram values of image unsharp masking approach.
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Ax for each corresponding nearest bounded box Bj , where the corresponding assignment function is shown 
in Eq. (8).

 B (Ax, Bj) = arg_minj IOU(Ax, Bj) (8)

From the above equation, the notation B(· ) represents the bounded box assignment function, and IOU  
represents the intersection over the union metric. The confidence score Ci for each anchor is assessed based on 
the chance that Ax relates to an actual object, and the same was approximated using the sigmoid function, as 
shown in Eq. (9).

 Cx = σ (lin (fx)) (9)

Environment Details Specifications

Machine Laptop

Make Lenovo

Model ThinkPad T16 Gen 2

Processor AMD Ryzen 5 PRO 7545U Processor

Online Platform Kaggle

GPU GPU T4 × 2

Coding Language Python: V 3.10.2

Libraries Used

PyTorch: V 1.9.0
Torchvision: V 0.10.0
Ultralytics: V 8.3.49
Pandas: V 1.3.5,
NumPy: V 1.21.4,
Matplotlib: V 3.4.3

Table 2. Details of the implementation environment.

 

Fig. 8. The input and output images and histogram values of image unsharp masking approach.
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From the above equation, the notation fi designates the feature vector for the anchor x. The bounded box 
regression for the anchor x in the one-to-one head is represented over the coordinates (px, qy) and dimensions 
(sx, ty) of Ax. The four learned offsets adjustments (∆ px, ∆ qx, ∆ sx, ∆ tx) to the assigned objects, which 

are shown in the Equations (10) through (13).

 p′
x = px + ∆px (10)

 q′ x = qx + ∆ qx (11)

 s′ x = sx · exp(∆ sx) (12)

Fig. 10. The architecture diagram of the Path Aggregation Network.

 

Fig. 9. The architecture diagram of CSPNet.
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 t′ x = tx · exp(∆ tx) (13)

The one-to-many head assigns an anchor box to different bounding boxes, allowing numerous detections per 
anchor. One-to-many head is useful in recognizing smaller or overlapping objects and is often employed in 
dense object identification tasks. The mathematical formulation for each anchor box Ax for each corresponding 
nearest bounded box Bj  across multiple ground truths concerning the threshold T  for Intersection over the 
Union (IOU) operation is presented in Eq. (14).

 B (Ax, Bj) = {j : IOU(Ax, Bj) ≥ T } (14)

The class and confidence scores are assessed for each anchor-object match, and the formula for the confidence 
score Cxj  is shown in Eq. (15) and class score kxj  is shown in Eq. (16).

 Cxj = σ (lin (fxj)) (15)

 kxj = softmax (lω c · fxj) (16)

Furthermore, the bounded box regression for each bounded box, over the offsets ∆ pxi, ∆ qxi, ∆ sxi, ∆ txi for 
each anchor box assignment is shown in Equations (17) through (20).

 p′
xi = px + ∆pxi (17)

 q′ xi = qx + ∆ qxi (18)

 s′ xi = sx · exp(∆ sxi) (19)

 t′ xi = tx · exp(∆ txi) (20)

Hyperparameters and performance analysis
The current section discusses the standard hyperparameters that are being used to implement the proposed 
YOLO V10 model for bone fracture detection. The corresponding baseline parameters are discussed in Table 3. 
The hyperparameters are then fine-tuned to analyze the model’s performance over divergent settings, each of 
which is recognized as configuration #1, configuration #2, and so on for all possible combinations.

Fig. 11. The architecture diagram of the head component of the YOLO V10 model.
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During the experimentation, the YOLO V10 model of bone fracture detection, the corresponding loss 
measures associated with box loss, class loss, and distribution of Focal Loss for both the training and testing 
phases are evaluated. The corresponding graphs obtained for the standard metrics are presented in Fig. 12.

However, the hyperparameters are being further tuned across multiple configurations to analyze the model’s 
performance. The configurations are as follows, Configuration #1 the standard hyperparameters, remained 
the same except for the learning rate, where the learning rate is set to 0.001. Configuration #2 includes the 
standard hyperparameter values, except the learning rate, where the learning rate is set to 0.1. Configuration #3 
includes the standard hyperparameter values, except the number of epochs. The number of epochs is set to 50. 
Configuration #3 includes the standard hyperparameter values, except the number of epochs, where the number 
of epochs is set to 150. The loss and accuracy graphs for each of these configurations are presented as follows, 

Fig. 12. The training and validation loss metrics were obtained on standard hyperparameters.

 

Environment Details Specifications

Learning Rate 0.01

Batch Size 64

Number of Epochs 100

Momentum Stochastic Gradient Descent

Weight Decay 0.005

Optimizer AdamW

Activation Function SiLU

Warmup Epochs: 1.7

Gradient Clipping: Yes

Table 3. Details of the standard hyperparameters used in the current study.
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the graphs of configuration #1 are presented in Fig. 13, The graphs of configuration #2 are presented in Fig. 14, 
the graphs of configuration #3 is presented in Fig. 15, and the graphs of configuration #4 is presented in Fig. 16.

It can be observed from the loss and accuracy graphs that the model performed reasonably better in the 
standard hyperparameters discussed in Table 2. This is followed by Configuration #4, which has performed well, 
but the model has performed exceptionally in the training phase and struggled to generalize in the validation 
phase. In configuration #1, the accuracy has dropped due to a lower learning pace. The lesser accuracy in 
configuration #2 might be due to instability in the model. Configuration #3 needs more epochs to converge. 
Furthermore, the model is also being evaluated over the raw data without performing the data augmentation, 
the obtained loss graphs are being presented in Fig. 17.

It can be observed from Figs.  12 and 17 that the model performed slightly better on the pre-processed 
images than the raw image. However, there is no significant change in the performance of the model. It can be 
understood that the YOLO V10 model is performing well on all forms of data, as the model is able to perform 
reasonably well on the raw data.

Results and discussion
The current section outlines the experimental observations of the proposed YOLO V10 model for bone 
fracture detection. The baseline metrics like true positive, true negative, false positive, and false negative are 
being observed across multiple instances to determine the number of successful instances, where the model 
has identified the fractured images correctly, and also the number of unsuccessful instances, where the model 
has misinterpreted normal images as fractured instance and vice versa. The model has been evaluated across 
divergent metrics like precision, recall, F1-Score, and mean Average Precision (mAP)42. The performances are 
being analyzed for each configuration, and the corresponding values are presented in Table 4.

Furthermore, the model is evaluated on the raw images, i.e., without any data augmentation. The raw and 
pre-processed images are being processed using the same standard configuration. The observed results on the 
raw and augmented images over the standard metrics are presented as a confusion matrix43 in Fig.  18. The 
observed results are presented in Table 5.

Fig. 13. The training and validation loss metrics were obtained over configuration #1.
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It can be observed from the experimental results shown in the above table, that the YOLO-based object 
detection model has performed well on both the raw and augmented results. Despite feeding the pre-processed 
images, the model managed to yield reasonable accuracy. On the other hand, considerable efforts are needed to 
pre-process the images concerning both the contrast and the sharpness of the objects in the image.

Furthermore, the impact of data augmentation is evaluated across three different configurations, 
Configuration#5 where only the CLAHE is performed on the data samples, Configuration #6 is performed 
CLAHE along with affine transforms over 30% of the dataset across all the partitions. Configure #7 is performed 
CLAHE along with affine transforms over 35% of the dataset across all the partitions. The obtained results across 
all three configurations are presented in Table 6.

The experimental results on evaluating over the standard parameters across the raw and augmented data are 
presented in Figs. 19 and 20. The bounded box across the region of interest shows the associated class label. The 
results obtained from the experimenting over the augmented data are presented in Fig. 19.

This can be observed from the experimental results shown in the above figure. The region of interest is 
enclosed in the box, and the label indicates the identified object class. The value that is enclosed in the label part 
is the confidence score that is associated with the class that is being identified. The confidence score is significant 
in assessing the likelihood of the region of interest being enclosed in the bounded box and the precision of that 
box’s location in the image. The experimental outcome of the raw images is shown in Fig. 20.

It can be observed from the experimental outcome that the confidence values are comparatively lower 
than the raw images due to the deviation of the bounded box localization over the region of interest44. When 
performing data augmentation over the raw images, contrast enhancement and image sharpening will assist in 
the precise localization of the region of interest. The statistical analysis of bone fracture recognition with the 
other existing models is presented in Table 7 to summarize the performance of the YOLO V10 model.

It can be observed from the tabulated values that the YOLO V10 model outperforms the other state-of-the-
art model in precisely identifying bone fractures and the associated classes. The results of the current study are 
across six different classes, and upon considering the classification for two classes, the YOLO V10 model would 
perform much better49.

Fig. 14. The training and validation loss metrics were obtained over configuration #2.
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Threats to the validity of the statement
The types of fractures that are considered in the current study are limited to the availability of the data that is 
being considered in the current study. The images in the dataset are annotated to the corresponding class, and 
the YOLO V10 model is trained on the ground facts associated with the dataset. The experimentation is done 
only on the data samples that are available as part of the dataset, hence the model is not evaluated with divergent 
instances. The model performance is evaluated in concerning to the ground truths, and they are not clinically 
evaluated.

Potential limitations
The current study has evaluated the YOLO V10 model concerning the learning rate and the number of epochs. 
The other hyperparameters, like the batch size, activation function, and optimizer, can be evaluated for better 
statistical analysis of the model50,51. The other existing models are not considered. However, they could be 
considered when analyzing the trade-off among the performances. The data balancing is not performed in the 
current study; however, it would significantly impact the model’s performance. The various versions of YOLO 
V10 can be analyzed to determine the trade-off among the performances. The ablation study is not performed 
in the current study as the YOLO V10 model is directly used, and no additional components are being used to 
optimize the performances, which is considered one of the potential limitations of the current study. The impact 
of various hyperparameters are being analyzed, but hyperparameter tuning can also be performed for better 
optimistic outcomes. The current study have not taken the data leakage by data augmentation into consideration.

Conclusion
The current study identifies bone fractures from X-ray images using the YOLO V10 model. The YOLO V10 
model is being analyzed concerning various hyperparameters by changing the number of epochs and the 
learning rate. However, with minimal change, the model can perform well in almost all the configurations. The 
model exhibited better accuracy when the number of epochs increased, where the model performed well for 
training data and struggled to analyze the validation data. Furthermore, data augmentation, like sharpening and 
contrast enhancements, is performed over the images, where the model has shown slightly better performance 

Fig. 15. The training and validation loss metrics were obtained over configuration #3.
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than the raw data. It can be observed from the experimental results that the YOLO V10 model is more robust 
than the augmented data in comparison to the raw data. The current dataset consists of seven different classes, 
and the model has achieved an accuracy of 96.4% when working with multi-class identification. The model can 
be expected to perform much better than the binary class. The confidence score was observed to be fair enough 
in localizing the object in the image. Using a transformer to capture the contextual information would assist in 
better performance and precise localization of the abnormality from the images.

The current study can be further extended over various versions of YOLO V10, and analyze the trade-
off between their accuracies and computational complexities. The optimizer and regularizer are not being 
analyzed in the current study. They can be evaluated as they are exceptionally significant in model training 
and generalization. A deep survey of all the YOLO versions from YOLO V1 to V10 can also be performed to 
analyze the evolution of the yolo model in object identification and assess its impact on the healthcare domain. 
In the current study, the impact of hyperparameters is analyzed upto a limited extent, furthermore, more 
hyperparameters can be considered, and optimization of hyperparameters can be done using the platforms like 
Optuna. The impact of data leakage could also be taken in to consideration for better statistical analysis of the 
model.

Fig. 16. The training and validation loss metrics were obtained over configuration #4.
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Model Precision Recall F1-Score mAP@0.50

YOLO V10 (Standard) 0.98 0.97 0.97 0.96

YOLO V10 (Conf #1) 0.96 0.98 0.96 0.91

YOLO V10 (Conf #2) 0.92 0.93 0.90 0.86

YOLO V10 (Conf #3) 0.90 0.91 0.90 0.84

YOLO V10 (Conf #4) 0.97 0.98 0.98 0.93

Table 4. Details of the observed experimental outcomes of various configurations.

 

Fig. 17. The training and validation loss metrics were obtained on standard hyperparameters without data 
augmentation.
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Model Precision Recall F1-Score mAP@0.50

YOLO V10 (Conf #4) 0.96 0.95 0.96 0.94

YOLO V10 (Conf #5) 0.96 0.95 0.95 0.95

YOLO V10 (Conf #6) 0.97 0.96 0.97 0.95

YOLO V10 (Standard) 0.98 0.97 0.97 0.96

Table 6. Experimental outcomes across various data augmentation settings.

 

Model Precision Recall F1-Score mAP@0.50

YOLO V10 (Augmented data) 0.98 0.97 0.97 0.961

YOLO V10 (Raw data) 0.95 0.94 0.95 0.948

Table 5. Experimental outcome over the Raw and augmented images.

 

Fig. 18. The confusion matrix on experimenting over the YOLO V10, (a) Augmented images, (b) raw X-Ray 
images.
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Fig. 19. The experimental outcome of the YOLO V10 model on augmented X-ray images.
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Data availability
The dataset analysed during the current study is available in the Bone Fracture Detection: Computer Vision 
Project repository, Link:  h t t p s :  / / w w w .  k a g g l e  . c o m / d  a t a s e  t s / p k d  a r a b i /  b o n e - f  r a c t u  r e - d e t  e c t i o n  - c o m p u  t e r - v i s i o n - 
p r o j e c t.

Received: 6 January 2025; Accepted: 7 March 2025

Model Accuracy Precision Recall F1-Score

VGG-1645 0.78 0.77 0.77 0.78

Inception V346 0.76 0.74 0.71 0.72

ResNet5046 0.77 0.68 0.66 0.67

VGG1946 0.84 0.74 0.68 0.72

VGG-1647 0.78 0.80 0.78 0.77

ResNet-5047 0.78 0.80 0.79 0.78

DenseNet-16947 0.80 0.81 0.80 0.79

InceptionV347 0.86 0.87 0.86 0.85

Xception47 0.86 0.86 0.86 0.86

VGG1948 0.95 0.93 0.93 0.93

Densely CNN49 0.83 n/a 0.96 n/a

YOLO V846 0.91 0.89 0.88 0.90

YOLO NAS46 0.95 0.94 0.92 0.93

YOLO V10 (Current Study) 0.96 0.98 0.97 0.97

Table 7. Performance analysis with existing studies.

 

Fig. 20. The experimental outcome of the YOLO V10 model on raw X-ray images.
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